Citation: Damian G. D'Souza. The Parathyroid Hormone Family of Ligands and Receptors[J]. AIMS Medical Science, 2015, 2(3): 118-130. doi: 10.3934/medsci.2015.3.118
[1] | Gardella TJ, Juppner H (2001) Molecular properties of the PTH/PTHrP receptor. Trends Endocrinol Metab 12(5): p. 210-217. |
[2] | Gensure RC, Gardella TJ, Juppner H (2005) Parathyroid hormone and parathyroid hormone-related peptide, and their receptors. Biochem Biophys Res Commun 328(3): p. 666-678. |
[3] | Guerreiro PM, Renfro JL, DM Power, et al. (2007) The parathyroid hormone family of peptides: structure, tissue distribution, regulation, and potential functional roles in calcium and phosphate balance in fish. Am J Physiol Regul Integr Comp Physiol 292(2): p. R679-696. |
[4] | Jerome CP, DB Burr, Bibber TV, et al. (2001) Treatment with human parathyroid hormone (1-34) for 18 months increases cancellous bone volume and improves trabecular architecture in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 28(2): p. 150-159. |
[5] | Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423(6937): p. 332-336. |
[6] | Philbrick WM, Wysolmerski J J, Galbraith S, et al. (1996) Defining the roles of parathyroid hormone-related protein in normal physiology. Physiol Rev 76(1): p. 127-173. |
[7] | On JS, Chow BK, Lee LT (2015) Evolution of parathyroid hormone receptor family and their ligands in vertebrate. Front Endocrinol (Lausanne) 6: p. 28. |
[8] | John MR, Arai M, Rubin DA, et al. (2002) Identification and characterization of the murine and human gene encoding the tuberoinfundibular peptide of 39 residues. Endocrin 143(3): p. 1047-1057. |
[9] | Papasani MR, Robert CG, John HB, et al. (2004) Identification and characterization of the zebrafish and fugu genes encoding tuberoinfundibular peptide 39. Endocrin 145(11): p. 5294-5304. |
[10] | Gensure RC, Cooper WC, Nickols GA, et al. (2004) Identification and characterization of two parathyroid hormone-like molecules in zebrafish. Endocrin 145(4): p. 1634-9. |
[11] | Shoemaker JM, Riley LG, Hirano T, et al. (2005) Differential expression of tuberoinfundibular peptide 38 and glucose-6-phosphatase in tilapia. Gen Comp Endocrinol 146(2): p. 186-94. |
[12] | Bhattacharya P, Yan Y-L, David AR, et al. (2001) Evolution of the vertebrate pth2 (tip39) gene family and the regulation of PTH type 2 receptor (pth2r) and its endogenous ligand pth2 by hedgehog signaling in zebrafish development. J Endocrinol 211(2): p. 187-200. |
[13] | Brommage R, Lees CG, Hotchkiss CE, et al. (1999) Daily treatment with human recombinant parathyroid hormone-(1-34), LY333334, for 1 year increases bone mass in ovariectomized monkeys. J Clin Endocrinol Metab 84(10): p. 3757-3763. |
[14] | Brown EM (1999) Physiology and pathophysiology of the extracellular calcium-sensing receptor. Am J Med 106(2): p. 238-253. |
[15] | Gunther T, Chen ZF, Kim G, et al. (2000) Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature 406(6792): p. 199-203. |
[16] | Tucci J, Russell A, Senior SV, et al. (1996) The expression of parathyroid hormone and parathyroid hormone-related protein in developing rat parathyroid glands. J Mol Endocrinol 17(2): p. 149-157. |
[17] | Harvey S, Hayer S, Sloley BD (1993) Dopaminergic actions of parathyroid hormone in the rat medial basal hypothalamus in vitro. Regul Pept 43(1-2): p. 49-56. |
[18] | Henriksen K, Neutzsky-Wulff AV, Bonewald LF, et al. (2009) Local communication on and within bone controls bone remodeling. Bone 44(6): p. 1026-1033. |
[19] | Hayden RS, Fortin JP, Harwood B, et al. (2014) Cell-tethered ligands modulate bone remodeling by osteoblasts and osteoclasts. Adv Funct Mater 24(4): p. 472-479. |
[20] | Sims NA, Vrahnas C (2014) Regulation of cortical and trabecular bone mass by communication between osteoblasts, osteocytes and osteoclasts. Arch Biochem Biophys 561: p. 22-28. |
[21] | Chen H, Senda T, Kubo KY (2015) The osteocyte plays multiple roles in bone remodeling and mineral homeostasis. Med Mol Morphol 48(2): p. 61-68. |
[22] | Danks JA, Damian GD, Gunn HJ, et al. (2011) Evolution of the parathyroid hormone family and skeletal formation pathways. Gen Comp Endocrinol 170(1): p. 79-91. |
[23] | Han SW, Kim SJ, Lee DJ, et al. (2014) The Relationship between Serum 25-Hydroxyvitamin D, Parathyroid Hormone and the Glomerular Filtration Rate in Korean Adults: The Korea National Health and Nutrition Examination Survey between 2009 and 2011. Korean J Fam Med 35(2): p. 98-106. |
[24] | Steingrimsdottir L, Gunnarsson O, Indridason OS, et al. (2005) Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake. Jama 294(18): p. 2336-2341. |
[25] | Stewart AF, Horst R, Deftos LJ, et al. (1980) Biochemical evaluation of patients with cancer-associated hypercalcemia: evidence for humoral and nonhumoral groups. N Engl J Med 303(24): p. 1377-1383. |
[26] | de la Mata J, Mundy GR, Guise TA, et al. (1995) Interleukin-6 enhances hypercalcemia and bone resorption mediated by parathyroid hormone-related protein in vivo. J Clin Invest 95(6): p. 2846-2852. |
[27] | Schipani E, Provot S (2003) PTHrP, PTH, and the PTH/PTHrP receptor in endochondral bone development. Birth Defects Res C Embryo Today 69(4): p. 352-362. |
[28] | Lanske B, Pajevic PD, Kovacs CS, et al. (1998) The parathyroid hormone (PTH)/PTH-related peptide receptor mediates actions of both ligands in murine bone. Endocrin 139(12): p. 5194-5204. |
[29] | Karaplis AC, Kronenberg HM, Mulligan RC, et al. (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8(3): p. 277-289. |
[30] | Ongkeko WM, Burton D, Kiang A, et al. (2014) Parathyroid hormone related-protein promotes epithelial-to-mesenchymal transition in prostate cancer. PLoS One 9(1): p. e85803. |
[31] | Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6): p. 442-454. |
[32] | Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28(1-2): p. 15-33. |
[33] | McCauley LK, Martin TJ (2012) Twenty-five years of PTHrP progress: from cancer hormone to multifunctional cytokine. J Bone Miner Res 27(6): p. 1231-1239. |
[34] | Agouni A, Sourbier C, Danilin S, et al. (2007) Parathyroid hormone-related protein induces cell survival in human renal cell carcinoma through the PI3K Akt pathway: evidence for a critical role for integrin-linked kinase and nuclear factor kappa B. Carcinogenesis 28(9): p. 1893-1901. |
[35] | Clemens TL, Cormier S, Eichinger A, et al. (2001) Parathyroid hormone-related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets. Br J Pharmacol 134(6): p. 1113-1136. |
[36] | Goomer RS, Shen X, Falzon M, et al. (2000) The tetrabasic KKKK(147-150) motif determines intracrine regulatory effects of PthrP 1-173 on chondrocyte PPi metabolism and matrix synthesis. Endocrin 141(12): p. 4613-4622. |
[37] | Watson PH, Hodsman AB, Fraher LJ, et al. (2000) Nuclear localization of the type 1 PTH/PTHrP receptor in rat tissues. J Bone Miner Res 15(6): p. 1033-1044. |
[38] | Juppner H, Kronenberg HM, Segre GV, et al. (1991) A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 254(5034): p. 1024-1026. |
[39] | Pilz P, Meyer-Marcotty P, Eigenthaler M, et al. (2014) Differential diagnosis of primary failure of eruption (PFE) with and without evidence of pathogenic mutations in the PTHR1 gene. J Orofac Orthop 75(3): p. 226-239. |
[40] | Piserchio A, Usdin T, Mierke DF (2000) Structure of tuberoinfundibular peptide of 39 residues. J Biol Chem 275(35): p. 27284-27290. |
[41] | Jonsson KB, John MR, Gensure R, et al. (2001) Tuberoinfundibular peptide 39 binds to the parathyroid hormone (PTH)/PTH-related peptide receptor, but functions as an antagonist. Endocrin 142(2): p. 704-709. |
[42] | Gardella TJ, et al. (1996) Converting parathyroid hormone-related peptide (PTHrP) into a potent PTH-2 receptor agonist. J Biol Chem 271(33): p. 19888-93. |
[43] | Tenne M, McGuigan F, Jansson L, et al. (2008) Genetic variation in the PTH pathway and bone phenotypes in elderly women: evaluation of PTH, PTHLH, PTHR1 and PTHR2 genes. Bone 42(4): p. 719-727. |
[44] | Usdin TB, Gruber C, Bonner TI (1995) Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J Biol Chem 270(26): p. 15455-15458. |
[45] | Usdin TB, Hoare SR, Wang T, et al. (1999) TIP39: a new neuropeptide and PTH2-receptor agonist from hypothalamus. Nat Neurosci 2(11): p. 941-943. |
[46] | Usdin TB (1997) Evidence for a parathyroid hormone-2 receptor selective ligand in the hypothalamus. Endocrin 138(2): p. 831-834. |
[47] | Usdin TB, Modi W, Bonner TI (1996) Assignment of the human PTH2 receptor gene (PTHR2) to chromosome 2q33 by fluorescence in situ hybridization. Genomics 37(1): p. 140-141. |
[48] | Gardella TJ, Vilardaga JP (2015) International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors-family B G protein-coupled receptors. Pharmacol Rev 67(2): p. 310-337. |
[49] | Dobolyi A, Palkovits M, Usdin TB (2003) Expression and distribution of tuberoinfundibular peptide of 39 residues in the rat central nervous system. J Comp Neurol 455(4): p. 547-566. |
[50] | Dobolyi A, Dimitiov E, Palkovits M, et al. (2012) The neuroendocrine functions of the parathyroid hormone 2 receptor. Front Endocrinol (Lausanne) 3: p. 121. |
[51] | Hoare SR, Rubin DA, Jüppner H, et al. (2000) Evaluating the ligand specificity of zebrafish parathyroid hormone (PTH) receptors: comparison of PTH, PTH-related protein, and tuberoinfundibular peptide of 39 residues. Endocrin 141(9): p. 3080-3086. |
[52] | Eichinger A (2002) Transcript expression of the tuberoinfundibular peptide (TIP)39/PTH2 receptor system and non-PTH1 receptor-mediated tonic effects of TIP39 and other PTH2 receptor ligands in renal vessels. Endocrin 143(8): p. 3036-3043. |
[53] | Pinheiro PL, Cardoso JCR, Power DM, et al. (2012) Functional characterization and evolution of PTH/PTHrP receptors: insights from the chicken. BMC Evol Biol 12: p. 110. |
[54] | Rubin DA, Juppner H (1999) Zebrafish express the common parathyroid hormone/parathyroid hormone-related peptide receptor (PTH1R) and a novel receptor (PTH3R) that is preferentially activated by mammalian and fugufish parathyroid hormone-related peptide. J Biol Chem 274(40): p. 28185-28190. |
[55] | Rubin DA, Hellman P, Zon LI, et al. (1999) A G protein-coupled receptor from zebrafish is activated by human parathyroid hormone and not by human or teleost parathyroid hormone-related peptide. Implications for the evolutionary conservation of calcium-regulating peptide hormones. J Biol Chem 274(33): p. 23035-23042. |
[56] | Rotllant J, Redruello B, Power DM, et al. (2006) Ligand binding and signalling pathways of PTH receptors in sea bream (Sparus auratus) enterocytes. Cell Tissue Res 323(2): p. 333-341. |
[57] | Pinheiro PL, Gomes AS, Power DM, et al. (2010) Gene structure, transcripts and calciotropic effects of the PTH family of peptides in Xenopus and chicken. BMC Evol Biol 10: p. 373. |
[58] | Canario AV, Rotllant J, Power DM, et al. (2006) Novel bioactive parathyroid hormone and related peptides in teleost fish. FEBS Lett 580(1): p. 291-299. |
[59] | Cardoso JC, Felix RC, Power DM (2014) Nematode and arthropod genomes provide new insights into the evolution of class 2 B1 GPCRs. PLoS One 9(3): p. e92220. |
[60] | D'Souza DG, Rana K, Milley KM, et al. (2013) Expression of Wnt signaling skeletal development genes in the cartilaginous fish, elephant shark (Callorhinchus milii). Gen Comp Endocrin 193: p. 1-9. |
[61] | Hwang JI, Moon MJ, Park M, et al. (2013) Expansion of secretin-like G protein-coupled receptors and their peptide ligands via local duplications before and after two rounds of whole-genome duplication. Mol Biol Evo 30(5): p. 1119-1130. |
[62] | On JS, Duan C, Chow BK, et al. (2015) Functional Pairing of Class B1 Ligand-GPCR in Cephalochordate Provides Evidence of the Origin of PTH and PACAP/Glucagon Receptor Family. Mol Biol Evol |
[63] | Cardoso JC, Pinto1 VC, Vieira1 FA, et al. (2006) Evolution of secretin family GPCR members in the metazoa. BMC Evol Biol 6: p. 108. |
[64] | Mirabeau O, Joly JS (2013) Molecular evolution of peptidergic signaling systems in bilaterians. Proc Natl Acad Sci USA 110(22): p. E2028-2037. |
[65] | Liu Y, Ibrahim AS, Walker TI, et al. (2010) Parathyroid hormone gene family in a cartilaginous fish, the elephant shark (Callorhinchus milii). J Bone Miner Res 25(12): p. 2613-2623. |
[66] | Ingleton PM (2002) Parathyroid hormone-related protein in lower vertebrates. Comp Biochem Physiol B Biochem Mol Biol 132(1): p. 87-95. |
[67] | Ingleton PM, Danks JA (1996) Distribution and functions of parathyroid hormone-related protein in vertebrate cells. Int Rev Cytol 166: p. 231-280. |
[68] | Abbink W, Flik G (2007) Parathyroid hormone-related protein in teleost fish. Gen Comp Endocrinol 152(2-3): p. 243-251. |
[69] | Barden JA, Cuthbertson RM (1993) Stabilized NMR structure of human parathyroid hormone(1-34). Eur J Biochem 215(2): p. 315-321. |
[70] | Ray FR, Barden JA, Kemp BE (1993) NMR solution structure of the [Ala26] parathyroid-hormone-related protein(1-34) expressed in humoral hypercalcemia of malignancy. Eur J Biochem 211(1-2): p. 205-211. |
[71] | Shimizu N, Petroni BD, Khatri A, et al. (2003) Functional evidence for an intramolecular side chain interaction between residues 6 and 10 of receptor-bound parathyroid hormone analogues. Biochem 42(8): p. 2282-2290. |
[72] | Blind E, Raue F, Knappe F, et al. (1993) Cyclic AMP formation in rat bone and kidney cells is stimulated equally by parathyroid hormone-related protein (PTHrP) 1-34 and PTH 1-34. Exp Clin Endocrinol 101(3): p. 150-155. |
[73] | Neer RM, Arnaud CD, Zanchetta JR, et al. (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19): p. 1434-1441. |
[74] | Nutt RF, Caulfield MP, Levy JJ, et al. (1990) Removal of partial agonism from parathyroid hormone (PTH)-related protein-(7-34)NH2 by substitution of PTH amino acids at positions 10 and 11. Endocrin 127(1): p. 491-493. |
[75] | Carter PH, Dean T, Gardella TJ, et al. (2015) Actions of the small molecule ligands SW106 and AH-3960 on the type-1 parathyroid hormone receptor. Mol Endocrinol. 29(2): p. 307-321. |
[76] | Mann R, Wigglesworth MJ, Donnelly D (2008) Ligand-receptor interactions at the parathyroid hormone receptors: subtype binding selectivity is mediated via an interaction between residue 23 on the ligand and residue 41 on the receptor. Mol Pharmacol 74(3): p. 605-613. |
[77] | Pioszak AA, Xu HE (2008) Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc Natl Acad Sci USA 105(13): p. 5034-5039. |
[78] | Barbier JR, MacLean S, Whitfield JF, et al. (2001) Structural requirements for conserved arginine of parathyroid hormone. Biochemistry 40(30): p. 8955-8961. |
[79] | Dean T, Khatri A, Gardella TJ, et al. (2006) Role of amino acid side chains in region 17-31 of parathyroid hormone (PTH) in binding to the PTH receptor. J Biol Chem 281(43): p. 32485-32495. |
[80] | Weaver RE, Wigglesworth MJ, Donnelly D (2014) A salt bridge between Arg-20 on parathyroid hormone (PTH) and Asp-137 on the PTH1 receptor is essential for full affinity. Peptides 61: p. 83-87. |
[81] | Pizurki L, Rizzoli R, Bonjour JP (1990) Inhibition by (D-Trp12,Tyr34)bPTH(7-34)amide of PTH and PTHrP effects on Pi transport in renal cells. Am J Physiol 259(2 Pt 2): p. F389-392. |
[82] | Carter PH, Juppner H, Gardella TJ (1999) Studies of the N-terminal region of a parathyroid hormone-related peptide (1-36) analog: receptor subtype-selective agonists, antagonists, and photochemical cross-linking agents. Endocrin 140(11): p. 4972-4981. |
[83] | Cohen FE, Strewler GJ, Bradley MS, et al. (1991) Analogues of parathyroid hormone modified at positions 3 and 6. Effects on receptor binding and activation of adenylyl cyclase in kidney and bone. J Biol Chem 266(3): p. 1997-2004. |
[84] | Whitfield JF, Morley P (1995) Small bone-building fragments of parathyroid hormone: new therapeutic agents for osteoporosis. Trends Pharmacol Sci 16(11): p. 382-386. |
[85] | Whitfield JF, Bringhurst FR (2000) Lactam formation increases receptor binding, adenylyl cyclase stimulation and bone growth stimulation by human parathyroid hormone (hPTH)(1-28)NH2. J Bone Miner Res 15(5): p. 964-970. |
[86] | Luck MD, Carter PH, Gardella TJ (1999) The (1-14) fragment of parathyroid hormone (PTH) activates intact and amino-terminally truncated PTH-1 receptors. Mol Endocrinol 13(5): p. 670-680. |
[87] | Shimizu M, Potts JT, Gardella TJ, et al. (2000) Minimization of parathyroid hormone. Novel amino-terminal parathyroid hormone fragments with enhanced potency in activating the type-1 parathyroid hormone receptor. J Biol Chem 275(29): p. 21836-21843. |
[88] | Liu Y, Cai Y, Liu W, et al. (2015) Triblock peptide-linker-lipid molecular design improves potency of peptide ligands targeting family B G protein-coupled receptors. Chem Commun (Camb) 51(28): p. 6157-6160. |
[89] | Neer M, Slovik DM, DalyM, et al. (1993) Treatment of postmenopausal osteoporosis with daily parathyroid hormone plus calcitriol. Osteoporos Int 3 Suppl 1: p. 204-205. |
[90] | Reeve J, Hesp R, Williams D, et al. (1976) Anabolic effect of low doses of a fragment of human parathyroid hormone on the skeleton in postmenopausal osteoporosis. Lancet 1(7968): p. 1035-1038. |
[91] | Divieti P, Geller AI, Suliman G, et al. (2005) Receptors specific for the carboxyl-terminal region of parathyroid hormone on bone-derived cells: determinants of ligand binding and bioactivity. Endocrin 146(4): p. 1863-1870. |
[92] | Inomata N, Akiyama M, Kubota N, et al. (1995) Characterization of a novel parathyroid hormone (PTH) receptor with specificity for the carboxyl-terminal region of PTH-(1-84). Endocrin 136(11): p. 4732-4740. |
[93] | Venkatesh B, Lee AP, Ravi V, et al. (2014) Elephant shark genome provides unique insights into gnathostome evolution. Nature 505(7482): p. 174-179. |