Research article

Diagnosis of musculoskeletal abnormalities based on improved lightweight network for multiple model fusion

  • Received: 23 October 2023 Revised: 02 December 2023 Accepted: 10 December 2023 Published: 15 December 2023
  • This paper introduces a solution to address the intricacy of the model employed in the deep learning-based diagnosis of musculoskeletal abnormalities and the limitations observed in the performance of a single deep learning network model. The proposed approach involves the integration of an improved EfficientNet-B2 model with MobileNetV2, resulting in the creation of FusionNet. First, EfficientNet-B2 is combined with coordinate attention (CA) to obtain CA-EfficientNet-B2. Furthermore, aiming to minimize the model parameter count, we further enhanced the mobile inverted residual bottleneck convolution module (MBConv) employed for feature extraction in EfficientNet-B2, resulting in the development of CA-MBC-EfficientNet-B2. Next, the features extracted from CA-MBC-EfficientNet-B2 and MobileNetV2 are fused. Finally, the final diagnosis of musculoskeletal abnormalities was performed by using fully connected layers. The experimental results demonstrate that, first, compared to EfficientNet-B2, CA-MBC-EfficientNet-B2 not only significantly improves the diagnostic performance of musculoskeletal abnormalities, it also reduces the parameter count and storage space by 17%. Moreover, as compared to other models, FusionNet demonstrates remarkable performance in the area of anomaly diagnosis, particularly on the elbow dataset, achieving a precision of 92.93%, an AUC of 93.89% and an accuracy of 87.10%.

    Citation: Zhigao Zeng, Changjie Song, Qiang Liu, Shengqiu Yi, Yanhui Zhu. Diagnosis of musculoskeletal abnormalities based on improved lightweight network for multiple model fusion[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 582-601. doi: 10.3934/mbe.2024025

    Related Papers:

  • This paper introduces a solution to address the intricacy of the model employed in the deep learning-based diagnosis of musculoskeletal abnormalities and the limitations observed in the performance of a single deep learning network model. The proposed approach involves the integration of an improved EfficientNet-B2 model with MobileNetV2, resulting in the creation of FusionNet. First, EfficientNet-B2 is combined with coordinate attention (CA) to obtain CA-EfficientNet-B2. Furthermore, aiming to minimize the model parameter count, we further enhanced the mobile inverted residual bottleneck convolution module (MBConv) employed for feature extraction in EfficientNet-B2, resulting in the development of CA-MBC-EfficientNet-B2. Next, the features extracted from CA-MBC-EfficientNet-B2 and MobileNetV2 are fused. Finally, the final diagnosis of musculoskeletal abnormalities was performed by using fully connected layers. The experimental results demonstrate that, first, compared to EfficientNet-B2, CA-MBC-EfficientNet-B2 not only significantly improves the diagnostic performance of musculoskeletal abnormalities, it also reduces the parameter count and storage space by 17%. Moreover, as compared to other models, FusionNet demonstrates remarkable performance in the area of anomaly diagnosis, particularly on the elbow dataset, achieving a precision of 92.93%, an AUC of 93.89% and an accuracy of 87.10%.



    加载中


    [1] J. Zhang, J. Z. Wang, Z. Yuan, E. S. Sobel, H. Jiang, Computer-aided classification of optical images for diagnosis of osteoarthritis in the finger joints, J. Xray. Sci. Technol., 19 (2011), 531–544. https://doi.org/10.3233/XST-2011-0312 doi: 10.3233/XST-2011-0312
    [2] M. Al-Ayyoub, D. Al-Zghool, Determining the type of long bone fractures in X-ray images, WSEAS Trans. Inf. Sci. Appl., 10 (2013), 261–270.
    [3] S. K. Mahendran, S. S. Baboo, An enhanced tibia fracture detection tool using image processing and classification fusion techniques in X-ray images, Glob. J. Comput. Sci. Technol., 11 (2011), 22–28.
    [4] H. Y. Chai, L. K. Wee, T. T. Swee, S. Hussain, Gray-level co-occurrence matrix bone fracture detection, WSEAS Trans. Syst., 10 (2011), 7–16.
    [5] M. Cohen, J. Puntonet, J. Sanchez, E. Kierszbaum, M. Crema, P. Soyer, et al., Artificial intelligence vs. radiologist: Accuracy of wrist fracture detection on radiographs, Eur. Radiol., 33 (2023), 3974–3983. https://doi.org/10.1007/s00330-022-09349-3 doi: 10.1007/s00330-022-09349-3
    [6] Y. Nam, Y. Choi, J. Kang, M. Seo, S. J. Heo, M. K. Lee, Diagnosis of nasal bone fractures on plain radiographs via convolutional neural networks, Sci. Rep., 12 (2022), 21510. https://doi.org/10.1038/s41598-022-26161-7 doi: 10.1038/s41598-022-26161-7
    [7] K. Oka, R. Shiode, Y. Yoshii, H. Tanaka, T. Iwahashi, T. Murase, Artificial intelligence to diagnosis distal radius fracture using biplane plain X-rays, J. Orthop. Res., 16 (2021), 694. https://doi.org/10.1186/s13018-021-02845-0 doi: 10.1186/s13018-021-02845-0
    [8] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, preprint, arXiv: 1409.1556. https://arXiv.org/abs/1409.1556
    [9] M. He, X. Wang, Y. Zhao, A calibrated deep learning ensemble for abnormality detection in musculoskeletal radiographs, Sci. Rep., 11 (2021), 9097. https://doi.org/10.1038/s41598-021-88578-w doi: 10.1038/s41598-021-88578-w
    [10] G. Singh, D. Anand, W. Cho, G. P. Joshi, K. C. Son, Hybrid deep learning approach for automatic detection in musculoskeletal aadiographs, Biology, 11 (2022), 665. https://doi.org/10.3390/biology11050665 doi: 10.3390/biology11050665
    [11] P. H. Yi, T. K. Kim, J. Wei, J. Shin, F. K. Hui, H. I. Sair, et al., Automated semantic labeling of pediatric musculoskeletal radiographs using deep learning, Pediatr. Radiol., 49 (2019), 1066–1070. https://doi.org/10.1007/s00247-019-04408-2 doi: 10.1007/s00247-019-04408-2
    [12] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 770–778.
    [13] J. Yao, Z. Guo, W. Yu, Enhanced deep residual network for bone classification and abnormality detection, Med. Phys., 49 (2022), 6914–6929. https://doi.org/10.1002/mp.15966 doi: 10.1002/mp.15966
    [14] C. T. Cheng, T. Y. Ho, T. Y. Lee, C. C. Chang, C. C. Chou, C. C. Chen, et al., Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs, Eur. Radiol., 29 (2019), 5469–5477. https://doi.org/10.1007/s00330-019-06167-y doi: 10.1007/s00330-019-06167-y
    [15] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely connected convolutional networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 2261–2269.
    [16] J. W. Choi, Y. J. Cho, S. Lee, J. Lee, S. Lee, Y. H. Choi, et al., Using a dual-input convolutional neural network for automated detection of pediatric supracondylar fracture on conventional radiography, Invest. Radiol., 55 (2020), 101–110. https://doi.org/10.1097/RLI.0000000000000615 doi: 10.1097/RLI.0000000000000615
    [17] C. T. Cheng, Y. Wang, H. W. Chen, P. M. Hsiao, C. N. Yeh, C. H. Hsieh, et al., A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs, Nat. Commun., 12 (2021), 1066. https://doi.org/10.1038/s41467-021-21311-3 doi: 10.1038/s41467-021-21311-3
    [18] Y. L. Thian, Y. Li, P. Jagmoha, D. Sia, V. E. Y. Chan, R. T. Tan, Convolutionalneural networks for automated fracture detection and localization on wrist radiographs, Radiol. Artif. Intell., 1 (2019), e180001. https://doi.org/10.1148/ryai.2019180001 doi: 10.1148/ryai.2019180001
    [19] C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4, inception-resnet and the impact of residual connections on learning, in Proceedings of the AAAI Conference on Artificial Intelligence, (2017), 4278–4284. https://doi.org/10.1609/aaai.v31i1.11231
    [20] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks, Adv. Neural Inf. Process. Syst., 39 (2015), 1137–1149.
    [21] P. Ye, S. Li, Z. Wang, S. Tian, Y. Luo, Z. Wu, et al., Development and validation of a deep learning-based model to distinguish acetabular fractures on pelvic anteroposterior radiographs, Front. Physiol., 14 (2023), 1146910. https://doi.org/10.3389/fphys.2023.1146910 doi: 10.3389/fphys.2023.1146910
    [22] X. Wang, Y. Wang, Composite attention residual U-Net for Rib fracture detection, Entropy, 25 (2023), 466. https://doi.org/10.3390/e25030466 doi: 10.3390/e25030466
    [23] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention, (2015), 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
    [24] L. Jin, J. Yang, K. Kuang, B. Ni, Y. Gao, Y. Sun, et al., Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet, EBioMedicine, 62 (2020), 103106. https://doi.org/10.1016/j.ebiom.2020.103106 doi: 10.1016/j.ebiom.2020.103106
    [25] A. Ghosh, D. Patton, S. Bose, M. K. Henry, M. Ouyang, H. Huang, et al., A patch-based deep learning approach for detecting rib fractures on frontal radiographs in young children, J. Digit Imaging, 36 (2023), 1302–1313. https://doi.org/10.1007/s10278-023-00793-1 doi: 10.1007/s10278-023-00793-1
    [26] T. Guo, C. Xu, S. He, B. Shi, C. Xu, D. Tao, Robust Student Network Learning, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 2455–2468. https://doi.org/10.1109/TNNLS.2019.2929114 doi: 10.1109/TNNLS.2019.2929114
    [27] L. Yang, G. Yuan, H. Wu, W. Qian, An ultra-lightweight detector with high accuracy and speed for aerial images, Math. Biosci. Eng., 20 (2023), 13947–13973. doi: 10.3934/mbe.2023621 doi: doi: 10.3934/mbe.2023621
    [28] E. Parcham, M. Fateh, HybridBranchNet: A novel structure for branch hybrid convolutional neural networks architecture, Neural Networks, 165 (2023), 77–93. https://doi.org/10.1016/j.neunet.2023.05.025 doi: 10.1016/j.neunet.2023.05.025
    [29] O. Eminaga, M. Abbas, J. Shen, M. Laurie, J. D. Brooks, J. C. Liao, et al., PlexusNet: A neural network architectural concept for medical image classification, Comput. Biol. Med., 154 (2023), 106594. https://doi.org/10.1016/j.compbiomed.2023.106594 doi: 10.1016/j.compbiomed.2023.106594
    [30] Z. Chen, J. Yang, L. Chen, H. Jiao, Garbage classification system based on improved ShuffleNet v2, Resour. Conserv. Recycl., 178 (2022), 106090. https://doi.org/10.1016/j.resconrec.2021.106090 doi: 10.1016/j.resconrec.2021.106090
    [31] M. Versaci, G. Angiulli, P. Crucitti, D. De Carlo, F. Laganà, D. Pellicanò, et al., A fuzzy similarity-based approach to classify numerically simulated and experimentally detected carbon fiber-reinforced polymer plate defects, Sensors, 22 (2022), 4232. https://doi.org/10.3390/s22114232 doi: 10.3390/s22114232
    [32] Z. Chen, J. Yang, C. Yang, BrightsightNet: A lightweight progressive low-light image enhancement network and its application in "Rainbow" maglev train, J. King Saud Univ-Com, 35 (2023), 101814. https://doi.org/10.1016/j.jksuci.2023.101814 doi: 10.1016/j.jksuci.2023.101814
    [33] P. Angelov, X. Gu, A cascade of deep learning fuzzy rule-based image classifier and SVM, in 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), (2017). https://doi.org/10.1109/SMC.2017.8122697
    [34] Z. Chen, J. Yang, L. Chen, Z. Feng, L. Jia, Efficient railway track region segmentation algorithm based on lightweight neural network and cross-fusion decoder, Autom. Constr., 155 (2023), 105069. https://doi.org/10.1016/j.autcon.2023.105069 doi: 10.1016/j.autcon.2023.105069
    [35] Z. Feng, J. Yang, Z. Chen, Z. Kang, LRseg: An efficient railway region extraction method based on lightweight encoder and self-correcting decoder, Expert Syst. Appl., 238 (2024), 122386. https://doi.org/10.1016/j.eswa.2023.122386 doi: 10.1016/j.eswa.2023.122386
    [36] M. Tan, Q. Le, EfficientNet: Rethinking model scaling for convolutional neural networks, in Proceedings of the 36th International Conference on Machine Learning(ICML), (2019), 6105–6114. https://arXiv.org/abs/1905.11946
    [37] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. C. Chen, MobileNetV2: Inverted residuals and linear bottlenecks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2018), 4510–4520.
    [38] Z. Chen, H. Guo, J. Yang, H. Jiao, Z. Feng, L. Chen, et al., Fast vehicle detection algorithm in traffic scene based on improved SSD, Measurement, 201 (2022), 111655. https://doi.org/10.1016/j.measurement.2022.111655 doi: 10.1016/j.measurement.2022.111655
    [39] P. Rajpurkar, J. Irvin, A. Bagul, D. Ding, T. Duan, H. Mehta, et al., Mura: Large dataset for abnormality detection in musculoskeletal radiographs, preprint, arXiv: 1712.06957.
    [40] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, et al., Show, Attend and Tell: Neural omage caption generation with visual attention, in International Conference on Machine Learning(ICML), (2015), 2048–2057.
    [41] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2018), 7132–7141.
    [42] Q. Hou, D. Zhou, J. Feng, Coordinate attention for efficient mobile network design, in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), (2021), 13708–13717.
    [43] Q. Wang, B. Wu, P. Zhu, P. Li, Q. Hu, ECA-Net: Efficient channel attention for deep convolutional neural networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020).
    [44] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, et al., MobileNets: Efficient convolutional neural networks for mobile vision applications, preprint, arXiv: 1704.04861.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(673) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog