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Abstract: This paper introduces a solution to address the intricacy of the model employed in the deep
learning-based diagnosis of musculoskeletal abnormalities and the limitations observed in the perfor-
mance of a single deep learning network model. The proposed approach involves the integration of
an improved EfficientNet-B2 model with MobileNetV2, resulting in the creation of FusionNet. First,
EfficientNet-B2 is combined with coordinate attention (CA) to obtain CA-EfficientNet-B2. Further-
more, aiming to minimize the model parameter count, we further enhanced the mobile inverted residual
bottleneck convolution module (MBConv) employed for feature extraction in EfficientNet-B2, result-
ing in the development of CA-MBC-EfficientNet-B2. Next, the features extracted from CA-MBC-
EfficientNet-B2 and MobileNetV?2 are fused. Finally, the final diagnosis of musculoskeletal abnormal-
ities was performed by using fully connected layers. The experimental results demonstrate that, first,
compared to EfficientNet-B2, CA-MBC-EfficientNet-B2 not only significantly improves the diagnostic
performance of musculoskeletal abnormalities, it also reduces the parameter count and storage space
by 17%. Moreover, as compared to other models, FusionNet demonstrates remarkable performance in
the area of anomaly diagnosis, particularly on the elbow dataset, achieving a precision of 92.93%, an
AUC of 93.89% and an accuracy of 87.10%.

Keywords: diagnosis of musculoskeletal abnormalities; EfficientNet-B2; MobileNetV2; coordinate
attention; mobile inverted residual bottleneck convolution

1. Introduction

Orthopedic imaging is one of the key tools for diagnosing and treating orthopedic diseases. Utilizing
orthopedic imaging techniques, physicians can accurately assess abnormalities in the musculoskeletal
system and develop optimal treatment plans. However, traditional methods for diagnosing muscu-
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loskeletal abnormalities are influenced by subjective experience and professional expertise, leading to
issues such as misdiagnosis and missed diagnosis. Moreover, accurate diagnosis of abnormalities is
crucial for the subsequent treatment of musculoskeletal disorders. Therefore, it is necessary to study
an accurate and efficient automated method for diagnosing musculoskeletal abnormalities.

Traditional diagnostic methods for musculoskeletal disorders are usually employed by manually
extracting specific features. For instance, Zhang et al. [1] suggested a computer-aided image classifi-
cation method for diagnosing finger joint osteoarthritis. The method can accurately identify the signs of
osteoarthritis through optical image analysis and feature extraction, which provides a powerful auxil-
iary diagnostic tool for doctors. Al-Ayyoub et al. [2] introduced a system that utilizes machine learning
to automatically detect fracture types in long bones based on X-ray images. Mahendran and Baboo [3]
put forward a technique for the detection of long bone fractures, which involves the fusion of clas-
sification methods. Chai et al. [4] proposed a gray-level co-occurrence matrix method for evaluating
the efficacy of femur long bone fractures. The extraction of features in the aforementioned algorithm
primarily relies on the researchers’ expertise, potentially resulting in a certain amount of information
loss.

In comparison, deep learning, as an automated learning approach, possesses the ability to partially
overcome the aforementioned limitations. One of its strengths lies in its ability to autonomously ac-
quire features from data without manual intervention. Additionally, deep learning models are adaptable
to diverse tasks and data distributions.

In the past couple of years, there has been a significant surge in interest in the application of deep
learning models, specifically convolutional neural networks (CNNs), in the field of medical image
analysis. This surge can be attributed to the rapid advancements observed in deep learning technology.

To date, there have been some studies on musculoskeletal X-ray images that use deep learning
methods. For instance, Cohen et al. [5] used an artificial intelligence algorithm with deep learning to
analyze and diagnose wrist X-rays; they compared the performance of radiologists in the detection of
wrist fracture X-rays. Nam et al. [6] presented a novel approach that utilizes EfficientNet-B7 to diag-
nose nasal bone fractures automatically. The study can quickly and accurately classify and judge new
X-ray images by learning a large number of X-ray images of nasal bone fractures and non-fractures.
Oka et al. [7] suggested a novel network architecture utilizing the VGG-16 [8] to diagnose distal ra-
dius fractures. This method can automatically analyze and diagnose biplane X-ray images by learning
fracture characteristics and patterns. In the work of He et al. [9], a methodology was presented that
combines calibrated deep learning to detect abnormalities in radiographs of skeletal muscles. Singh et
al. [10] suggested a novel CNN-based hybrid architecture, ComDNet-512, to effectively detect skele-
tal abnormalities in patient musculoskeletal X-rays. Yi et al. [11] used a pre-trained ResNet [12] for
transfer learning to quickly and accurately classify children’s skeletal X-ray images. Yao et al. [13]
proposed a deep learning framework to enhance the diagnostic speed of orthopedic diseases based on
X-rays. This framework incorporated a two-stage approach for bone classification and anomaly de-
tection. Cheng et al. [14] applied the DenseNet-121 [15] model for the identification and localization
of hip fractures in pelvic X-rays. Choi et al. [16] suggested a dual-input network model utilizing the
ResNet architecture, which automatically detected supracondylar fractures in children on conventional
X-rays showing both anterior and lateral elbow X-rays. Cheng et al. [17] put forward PelviXNet, a
multi-scale deep learning algorithm designed specifically for detecting pelvic and hip fractures in plain
X-ray radiographs. The study showed that PelviXNet showed comparable performance to radiologists
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and orthopedic surgeons. Thian et al. [18] leveraged the Inception-ResNet [19] and Faster R-CNN [20]
models to identify and localize fractures on X-rays of the wrist. The study proved that object detection
CNN s had high sensitivity and specificity when detecting and locating fractures of the radius and ulna
in wrist X-rays. Ye et al. [21] built a deep learning network model based on DenseNet-169 architecture
to differentiate between acetabular fractures on anterior-posterior pelvic X-rays, and according to the
experimental outcomes, the model demonstrated diagnostic performance that is on par with, or even
superior to, that of the clinician. Proposed by Wang and Wang [22], a method utilizing U-net [23] was
introduced for the detection of rib fractures. This approach leverages pixel-level rib fracture features
to achieve the rapid and precise detection of rib fractures. Jin et al. [24] proposed a CNN model called
FracNet for detecting and segmenting rib fractures. Ghosh et al. [25] put forward a CNN model that
utilizes a patch-based image analysis method and transfer learning via ResNet to detect fractures of the
ribs in frontal X-rays of children under the age of 2 years.

Although the CNN-based methods mentioned above possess the ability to automatically extract
features and tackle complex challenges in musculoskeletal abnormality diagnosis, the high accuracy
of CNNs often relies on complex network architectures [26], which means that a larger amount of
computation and parameters are required [27]. Expanding the depth and width of a CNN is generally
known to improve its performance; however, it also results in a proliferation of network parameters [28,
29]. Consequently, the network becomes excessively complex to deploy on edge devices. This is
the main disadvantage of the aforementioned method based on a CNN. In addition, these anomaly
diagnosis methods typically use a single network. Due to the limited performance of a single network,
it may be difficult to capture feature information at different scales, which could potentially impact the
diagnostic results.

To date, many scholars have conducted research on lightweight model architectures. For exam-
ple, Chen et al. [30] proposed a lightweight garbage classification model, GCNet, which achieved an
average accuracy of 97.9% on a self-built dataset with only 1.3M parameters. Versaci et al. [31] pro-
posed an innovative fuzzy classification procedure based on fuzzy similarity calculation. This method
can group similar images together in a fuzzy manner and extract representative images from each in-
dividual group, demonstrating the ability to reduce computational load. Chen et al. [32] proposed a
progressive lightweight network, BrightsightNet, for enhancing low-light images. The model has only
2.6K parameters and was shown to achieve a single inference time of 0.052 seconds. Angelov and
Gu [33] put forward an image classifier based on fuzzy rules of deep learning, which combines deep
learning with fuzzy rules and greatly improves classification performance. Chen et al. [34] proposed an
efficient railway track area segmentation network, ERTNet, based on an encoder-decoder architecture.
The model achieves a balance between segmentation accuracy and computational efficiency. Feng et
al. [35] proposed a lightweight and efficient railway area extraction model, LRseg, which provides tech-
nical support for foreign object detection on railways. The model has size and memory requirements of
only 2.98 MB and 37.5 MB, respectively. Tan and Le [36] proposed a new network architecture called
EfficientNet, which provides an effective and simple method for scaling CNNs, and they achieved
better performance and higher efficiency. Sandler et al. [37] introduced a lightweight network archi-
tecture called MobileNetV2, which maintains high image classification accuracy and computational
efficiency even on resource-constrained mobile devices. Chen et al. [38] proposed an improved single
shot multibox detector (SSD) algorithm. The algorithm utilizes MobileNetV2 as the backbone feature
extraction network for the SSD, enhancing the real-time performance of the algorithm. The above
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literature provides us with very good new ideas for designing lightweight models.

Considering the lightweight structure and high performance of EfficientNet-B2 and MobileNetV2,
we propose an improved EfficientNet-B2 network model. This model has become more lightweight
and higher-performing than the baseline model. To achieve more accurate results in the detection of
musculoskeletal abnormalities, a classification algorithm based on the improved EfficientNet-B2 and
MobileNetV2 multi-model fusion is proposed. We have used the public dataset for musculoskeletal
radiography (MURA) [39] to verify the above method.

To provide a summary of the contributions offered by this paper, they can be described as follows:

1). Our proposed CA-MBC-EfficientNet-B2 involves integrating the coordinate attention (CA)
module, which effectively mitigates the loss of positional information during feature extraction and
enhances the network’s expressive capacity.

2). We propose an improved mobile inverted residual bottleneck convolution (MBConv) module
that reduces the amount of EfficientNet-B2 parameters and improves the performance of EfficientNet-
B2.

3). Our proposed CA-MBC-EfficientNet-B2 model has shown higher accuracy and better
lightweight performance than the traditional EfficientNet-B2 model when applied for the diagnosis
of musculoskeletal abnormalities, providing empirical evidence for the performance improvement of
musculoskeletal disease diagnosis in the medical field.

4). Our proposed FusionNet combines two different network architectures to provide more com-
prehensive and accurate abnormal diagnosis results, opening up new possibilities for musculoskeletal
disease diagnosis in the medical field.

The organization of the subsequent sections of this paper can be described as follows. Section 2
focuses on the dataset utilized in this study, along with a comprehensive explanation of the enhanced
EfficientNet-B2 classification model. Additionally, it delves into the multi-model fusion classifica-
tion algorithm, which is based on both the improved EfficientNet-B2 and MobileNetV2 architectures.
Section 3 provides the experimental design in this study and the analysis of the experimental results.
Section 4 encompasses the conclusions derived from the findings of this study.

2. Datasets and proposed methods

2.1. Datasets

MURA is a large skeletal X-ray dataset that is used to evaluate whether the corresponding parts of
the X-ray images fed into the network model are abnormal or normal. It includes seven upper limb
radiological study sites: shoulder, elbow, fingers, forearm, hand, humerus, and wrist. Using these seven
datasets, we can train deep learning models to automatically identify abnormalities in musculoskeletal
images, helping doctors to make more accurate and rapid diagnoses. The anomaly detection task on
the MURA dataset involves a binary classification problem. An upper limb X-ray film serves as the
input to the model, which produces a binary label y € {0, 1} as its output. This label indicates whether
the corresponding body part is classified as normal or abnormal. Table 1 visualizes the distribution of
the MURA dataset, presenting the breakdown of different categories within the dataset. In Figure 1,
a collection of X-ray images from the MURA dataset is presented, revealing a range of normal and
abnormal cases.
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Table 1. The distribution of normal and abnormal data in the dataset.

Datasets Training set Testing set Total
Normal Abnormal Normal Abnormal
Wrist 5769 3987 364 295 10415
Elbow 2925 2006 235 230 5391
Shoulder 4211 4168 285 278 8942
Forearm 1164 661 150 151 2126
Finger 3138 1968 214 247 5567
Hand 4059 1484 271 189 6003
Humerus 673 599 148 140 1560
Elbow Wrist Shoulder Forearm

Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal

Figure 1. Examples of X-rays in the MURA dataset.

2.2. Improved EfficientNet-B2 classification model

Introduced in 2019 by the Google Brain team, EfficientNet is a CNN architecture. It leverages
composite scaling coefficients to optimize the network’s depth, width, and resolution simultaneously.
By employing automatic model scaling, EfficientNet can adaptively adjust to datasets of varying sizes,
leading to impressive performance across different computer vision tasks and datasets. As a result,
EfficientNet has gained immense popularity and is widely deployed in diverse computer vision appli-
cations. The EfficientNet architecture comprises a series of eight models, denoted as BO-B7. As the
depth and width of the models increase, their complexity also escalates, demanding more advanced ex-
perimental equipment. In this study, given the constraints of the laboratory equipment, EfficientNet-B2
was chosen as the baseline model. EfficientNet-B2 employs the MBConv module for feature selection.
Figure 2 displays the MBConv module.
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Figure 2. MBConv module.

The inclusion of an attention mechanism [40] in the network model typically results in a focus on es-
sential feature points while disregarding less significant ones. The channel attention mechanism within
the MBConv module, known as the squeeze and excitation (SE) module [41], contributes to enhancing
network performance by dynamically adjusting the channel weights of the feature map. Nonetheless,
the SE module operates on a global scale within each channel, overlooking spatial information inter-
action and failing to fully exploit its underlying information potential. Figure 3 shows the structure of
the SE module.

Average Fully Fully
Pooling Connected R Connected

Sigmoid  |—

Figure 3. SE module.

The integration of channel and spatial attention mechanisms in the CA module [42] is achieved by
incorporating positional information into the channel attention. This strategy effectively prevents the
loss of positioning information during two-dimensional global pooling. Hence, it is integrated with
EfficientNet-B2 to better allocate feature weights and enhance model performance. The structure of
the CA module is depicted in Figure 4.

XAvgrage Convixl —= Sigmoid
Pooling Spilt

Concat+Convixl —»| BN |—| ReLU P
YAvgrage Convixl |—»| Sigmoid
Pooling

Figure 4. CA module.

The inclusion of two fully connected layers in the SE module for the purpose of computing the
channel attention weights results in an expansion of the parameter count for the MBConv module.
EfficientNet-B2 is a network built by stacking MBConv modules, which increases the complexity of
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EfficientNet-B2. The efficient channel attention (ECA) module [43] does not contain the fully con-
nected layers, and it calculates the channel attention weight through a learnable one-dimensional con-
volution (1D convolution) operation to achieve efficient calculation. By applying a 1D convolution
operation on the channel dimension, the ECA module can not only capture local channel interdepen-
dencies, it can also involve only a few parameters. The modeling of this local relationship can result
in the extraction of important channel features more effectively. The ECA module is shown in Figure
5. As compared to the SE module, the ECA module has a better lightweight network design. As a
means of improving model performance and simultaneously reducing model parameters, the SE mod-
ule within the MBConv module is substituted with the ECA module. Figure 6 shows the improved
MBConv module. The structure of the CA-MBC-EfficientNet-B2 model is shown in Figure 7.

One-Dimensional
A . .
verage > Conv > Sigmoid
Pooling k3>3
Figure 5. ECA module.
BN BN
Swish Swish

N
(N

Efficient Channel Attention

Convlxl Dropout
Depthwise Conv k3>3/k5>5

Cdnlel

Figure 6. Improved MBConv module.
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Figure 7. CA-MBC-EfficientNet-B2 model structure.

2.3. Classification algorithm based on multi-model fusion of CA-MBC-EfficientNet-B2 and
MobileNetV2

The diagnosis of musculoskeletal diseases in current deep learning techniques primarily relies on
the utilization of a single network. Compared with traditional disease diagnosis techniques, this method
offers progress in areas of diagnostic accuracy and diagnostic speed. However, due to the limitation of
the performance of a single network, the diagnosis result may be affected to some extent. To address
these issues, we suggest the implementation of a classification algorithm that utilizes the multi-model
fusion of CA-MBC-EfficientNet-B2 and MobileNetV2. MobileNetV2 and EfficientNet-B2 have simi-
lar features, and both of them are lightweight networks. MobileNetV?2 is a lightweight CNN proposed
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by Google in 2018. One of the main ideas of MobileNetV2 is to replace traditional convolutional lay-
ers with deep separable convolution [44] to decrease computational effort and model size. Meanwhile,
MobileNetV?2 introduces the linear bottleneck and inverse residual structure as part of its architecture
enhancements, with the primary objective of enhancing network performance. The linear bottleneck is
employed in MobileNetV2 for feature selection, and Figure 8 illustrates its linear bottleneck structure.

BN BN
ReL U6 RelL U6 BN 69
—_—T _— _— > >
A
Convixd Convixd
Depthwise Conv k3>3

Figure 8. Bottleneck module.

Algorithm 1 describes the process of image classification via a multi-model fusion approach based
on CA-MBC-EfficientNet-B2 and MobileNetV2. First, the training dataset is fed into FusionNet for
150 epochs, continuously optimizing it based on the cross-entropy loss function. Then, the instance
images are classified by using the optimized model. The structure of FusionNet is shown in Figure 9.
The specific form of the cross-entropy loss function is as follows:

N
Ly, = - ) vilog(§) 2.1)
i=1

where L(y, ) represents the loss function, y denotes the true label, y represents the predicted value by
the model, N represents the number of classes, y; refers to the i-th element of the true label, and ¥;
indicates the i-th element of the predicted value.

The computational complexity of Algorithm 1 primarily depends on the model structure and the size
of the input images, which is typically measured by using the metric of floating-point operations. The
detailed parameters of the CA-MBC-EfficientNet-B2 structure are shown in Table 2, and the detailed
parameters of the MobileNetV?2 structure are shown in Table 3. Here, “Input” represents the size
of the input feature map, “Operator” represents the operation performed on the input feature map,
“Channels” represents the number of output feature map channels and “Layers” represents the number
of times each operation is performed. When the input image size is 260 x 260, based on the model
structure parameters, the computed floating-point operations for CA-MBC-EfficientNet-B2 are 2.04
GFLOPs (floating point of operations), for MobileNetV2 are 0.94 GFLOPs, and for FusionNet are
2.98 GFLOPs.
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Algorithm 1: Model fusion algorithm based on CA-MBC-EfficientNet-B2 and Mo-

bileNetV?2

Input: Training dataset, X

Output: Classification results, R

)

begin

2 Initialize CA-MBC-EfficientNet-B2 network and MobileNetV2 network.

/% f(X)camse
/* f(x), « MobileNetV2

Improved M BConv
h

3 Fuse f(x)camsc and f(x), and initialize.

/* f(x)fusion — f(x)CAJIBC + f(x)Q

4 while epoch < 150 do
5 Substitute X into f(X)usion-

6 Optimize the model f(x)gsi0n through the cross-entropy loss function:
/* Cross-Entropy loss function:

7 f(x)fusion — f(x)fusion

8 end while

9 Save model f(x)gusion-

10 Substitute Y into model f(x)susion to get the model classification results R.
1 return R.
12 end

Predicting samples, Y

F(X)ca & f(x); « EfficientNet-B2

<

H(Label, f(x)) = — >, Label X log(f(x))

Table 2. CA-MBC-EfficientNet-B2 model structure. Conv: convolution, FC: fully con-

nected.
Input Operator Channels Layers
260 x 260 x 3 Conv 3 x 3 32 1
130 x 130 x 32 CA module 32 1
130 x 130 x 32 MBConvl, k3 %3 16 2
130 x 130 x 16 MBConv6, k3 %3 24 3
65 X 65 x 24 MBConv6, k5 x5 48 3
33 x 33 x48 MBConv6, k3 x3 88 4
17 x 17 x 88 MBConv6, k5 x5 120 4
17 x 17 x 120 MBConv6, k5 x5 208 5
9 x9 x208 MBConv6, k3 x3 352 2
9x9x352 Conv 1 x1 & Pooling & FC 1280 1

Mathematical Biosciences and Engineering
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Table 3. MobileNetV2 model structure.

Input Operator Channels Layers
260 x 260 x 3 Conv 3 x3 32 1
130 x 130 x 32 Bottleneck 16 1
130 x 130 x 16 Bottleneck 24 2
65 X 65 x 24 Bottleneck 32 3
33 x 33 x 32 Bottleneck 64 4
17 x 17 x 64 Bottleneck 96 3
17 x 17 x 96 Bottleneck 160 3
9x9x160 Bottleneck 320 1
9x9x320 Conv1x1 1280 1
9 x9x 1280 Avgpool 7 x 7 - 1
1x1x1280 Conv1xl1 32 -

Mobilenetv2

E onvixl
Convixd perhwise Conv kaxa c
—

¢ — T M@%@
~ /

~—_ /

'
Fully connected layer

Efficient Channel Attention

Convix

CA-MBC-EfficientNet-B2

Figure 9. FusionNet based on the multi-model fusion of CA-MBC-EfficientNet-B2 and
MobileNetV?2.

2.4. Model training and testing procedures

The study involved two processes, i.e., 1) training FusionNet and CA-MBC-EfficientNet-B2 sep-
arately on seven datasets in MURA to generate an optimized model, and 2) testing FusionNet and
CA-MBC-EfficientNet-B2 separately on seven datasets from MURA. The training process is as fol-
lows:

1.) The samples intended for input into the training model are divided into training and validation
sets, maintaining a ratio of 8:2.

2.) For the training set, first of all, randomly crop the size of the picture to 260 X 260. A horizontal
flip is then performed to enhance the diversity of the data set. A data type conversion is then performed
to convert the image to a tensor. Finally, to ensure uniformity and comparability of pixel values across
all channels of the image, a standardization process is performed. For the validation set, first adjust the
image size to 260 x 260. Then perform a center cropping operation to crop the image from the center
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to 260 x 260. Then, data type conversion is performed to convert the image into a tensor. Finally,
the pixel values of each channel in the image are standardized through a process that aims to achieve
uniform range and distribution.

3.) The processed images are taken as input and the corresponding labels are output; additionally,
FusionNet and CA-MBC-EfficientNet-B2 are used for training. The precision, AUC and accuracy
indexes on the verification set are monitored and saved, and the weights with the best performance on
these indexes are selected as the final weights to obtain the optimized model.

The following outlines the testing process:

1.) Select the test sample and adjust the picture size to 260 X 260. The image is then cropped at the
center, reducing it to 260 X 260 in size, thus preserving the central portion. A data type conversion is
then performed to convert the image to a tensor. Finally, to achieve comparable range and distribution,
the pixel values in each channel of the image undergo a standardization process.

2.) Using the processed image as input, the optimization model is utilized to determine the image
label based on the model’s output.

3. Experiments

3.1. Experimental environment and hyperparameter selection

The network model training in this study was conducted on hardware consisting of an Intel Xeon
Gold 5320 processor, an Nvidia RTX A4000 graphics card, 32 GB of memory and the Linux operating
system; additionally, Pytorch is the deep learning framework utilized in this study. To maintain ob-
jectivity in a comparison of the performance of each network model and to prevent biases from being
introduced by the training process, the experiment was conducted with uniform parameter settings. All
network models were trained for 150 epochs on the same dataset, with a consistent sample batch size
of 16.

3.2. Experimental results and analysis

To accurately verify the performance of FusionNet and CA-MBC-EfficientNet-B2, this experiment
compares the abnormal diagnostic performance of FusionNet with that of CA-MBC-EfficientNet-B2,
EfficientNet-B2, MobileNetV2 and ResNet-50 on seven datasets from MURA, respectively. Precision,
AUC and accuracy were selected as performance evaluation indexes. Precision is a metric used to
assess the accuracy of positive case predictions in a classification model, AUC is the measure of the
classification ability and differentiation of the model and accuracy is a metric employed to evaluate the
overall accuracy of a classification model. Figure 10 illustrates the experimental results, with Figure
10(a)—(g) representing the outcomes for each model on the datasets corresponding to the shoulder,
elbow, finger, forearm, hand, humerus, and wrist, respectively.

Mathematical Biosciences and Engineering Volume 21, Issue 1, 582-601.



594

0.88

0.86

[——ResNet-50
—@—MobileNet V2

I—¥— CA-MBC-EfficientNet-B2
|—@—FusionNet

(—— EfficientNet-B2 0.94 |-
0.92 -
0.84 -
0.90 -
0.82
0.80 |- .
0.78 - 0.86 -
0.76 0.84
L L L

0.88 |-

[~ —ResNet-50

@~ MobileNetV2
|——EfficientNet-B2
[~w—CA-MBC-EfficientNet-B2|

[—@—FusionNet

Precision AUC Accuracy Precision AUC Accuracy
(a) shoulder (b) elbow
[~ ResNet-50 090 [~ ResNet-50
092 —®—MobileNet V2 [—@—MobileNetV2
{—A— EfficientNet-B2 (—&— EfficientNet-B2
|—w—CA-MBC-EfficientNet-B2| (.88 |- [—y— CA-MBC-EfficientNet-B2
0.90 - |—@— FusionNet |—@— FusionNet
0.88 - 0.86 |

0.86 -

0.84 -
0.84 -

0.82 -
0.82 -
0.80 - 0.80 -
0.78 -

0.78
0.76 -

L L

|
- 0.76 L L -
Precision AUC Accuracy Precision AUC Accuracy
(c) finger (d) forearm
0.92 [—ResNet-50
E—ResNet-50 -®—MobileNetv2
0.88 - [—A—EfficientNet-B2
0.90 [—¥— CA-MBC-EfficientNet-B2
[~@—FusionNet FusionNet
0.86 -
0.88 -
0.84 |-
0.86 -
0.82
0.84 -
0.80
0.82 -
0.78 -
0.76 0.80 -
L L L 1 I |
Precision AUC Accuracy Precision AUC Accuracy
(e) hand (f) humerus
094 [——ResNet-50
@ MobileNetV2
A EfficientNet-B2
092 - (—¥— CA-MBC-EfficientNet-B2
|- FusionNet
0.90
0.88 -
0.86 -
0.84
0.82 -
0.80 - L L

Figure 10. Performance comparison for different models on MURA datasets.
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The results of the experiments show that FusionNet achieves significantly better performance on
the seven datasets (a) to (g), particularly on the elbow dataset, where the precision, AUC and accu-
racy reach 92.93%, 93.89% and 87.10%, respectively, while EfficientNet-B2 and MobileNetV2 do not
perform well in terms of the evaluation metrics. This means that compared to EfficientNet-B2 and
MobileNetV2, FusionNet overcomes the limitations of individual network performance while incor-
porating features from multiple networks and extracting more effective features, ultimately improving
overall performance. CA-MBC-EfficientNet-B2 performs worse than FusionNet but generally better
than other models on the seven datasets shown in Figure 10(a)—(g). This means that by combin-
ing the CA module and using the improved MBConv module, the performance of EfficientNet-B2 is
significantly improved. All in all, FusionNet and CA-MBC-EfficientNet-B2 demonstrated excellent
performance in the diagnosis of musculoskeletal abnormalities.

To accurately validate the lightweight design of FusionNet and CA-MBC-EfficientNet-B2, Table 4
presents the parameter count, model size and FLOPs of FusionNet and CA-MBC-EfficientNet-B2 as
compared to other models. The parameter count is usually used to measure the intricacy of the model,
model size is usually used to measure the storage requirements and computing resource consumption
and FLOPs is commonly employed as a metric to assess the computational complexity and speed of a
model.

Table 4. Comparison of parameter count, model size and FLOPs of different models.

Model No. of parameters Model size FLOPs
ResNet-50 23.51M 89.68 MB 12.00G
MobileNetV2 2.23M 8.49 MB 0.94G
EfficientNet-B2 7.70M 29.38 MB 2.04G
CA-MBC-EfficientNet-B2 6.37TM 24.34 MB 2.04G
FusionNet 9.5IM 36.28 MB 2.98G

As can be seen from the table above, CA-MBC-EfficientNet-B2 reduced the parameter count and
model size by 1.33M and 5.04 MB, respectively, relative to EfficientNet-B2. Compared with ResNet-
50, the parameter count, model size, and FLOPs are only 27%, 27% and 17% of its size, respectively.
This means that CA-MBC-EflicientNet-B2 has extremely low complexity. Although FusionNet exhib-
ited larger values for the number of parameters, model size and FLOPs compared to EfficientNet-B2
and MobileNetV2, its performance has been greatly improved. This means that FusionNet strikes a fa-
vorable balance between performance and having a lightweight structure, steering clear of the extremes
characterized by low model complexity and low performance.
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Figure 11. Performance comparison for different models on MURA datasets.
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3.3. Ablation studies

We conducted ablation studies on seven datasets within MURA to investigate the components of
CA-MBC-EfficientNet-B2.

To investigate the contributions of the CA module and improved MBConv module in terms
of performance, we conducted an experiment to compare the abnormal diagnosis performance of
EfficientNet-B2, CA-EfficientNet-B2 and CA-MBC-EfficientNet-B2 on seven datasets from MURA.
The selected performance evaluation indices were precision, AUC and accuracy. Figure 11 displays the
experimental results. The experimental results demonstrate a substantial improvement in the perfor-
mance of CA-EfficientNet-B2 relative to EfficientNet-B2. This suggests that EfficientNet-B2 fails to
preserve positional feature information during the process of feature extraction, thereby impacting the
model’s performance. By incorporating location information within the channel attention mechanism,
the CA modules effectively address the issue of feature information loss, leading to notable improve-
ments in the model’s performance. The superior performance of CA-MBC-EfficientNet-B2 compared
to CA-EfficientNet-B2 indicates that the enhanced MBConv module is more proficient in extracting
crucial features.

To investigate the contributions of the CA module and improved MBConv module in terms of
lightweight design, Table 5 presents the parameter count, model size and FLOPs of EfficientNet-B2,
CA-EfficientNet-B2 and CA-MBC-EfficientNet-B2, respectively.

Table S. Comparison of parameter count, model size and FLOPs of different models.

Model No. of parameters Model size FLOPs
EfficientNet-B2 7.70M 29.38 MB 2.04G
CA-EfficientNet-B2 7.70M 29.41 MB 2.04G
CA-MBC-EfficientNet-B2 6.37M 24.34 MB 2.04G

As can be seen from the table above, as compared to EfficientNet-B2, the number of parameters
and FLOPs of CA-EfficientNet-B2 remain the same, and the model size is only increased by 0.03 MB.
This implies that the CA module can almost enhance the complexity of EfficientNet-B2. CA-MBC-
EfficientNet-B2 reduces the parameter count and model size by 17% relative to CA-EfficientNet-B2
and EfficientNet-B2, which shows that the improved MBConv involves significantly fewer parameters.
It also means that CA-MBC-EfficientNet-B2 can be deployed on mobile, embedded and edge devices.

4. Conclusions

We have proposed an improved EfficientNet-B2 model, CA-MBC-EfficientNet-B2, which is fused
with MobileNetV?2 to obtain FusionNet. CA-MBC EfficientNet-B2 and FusionNet were used for the di-
agnosis of musculoskeletal abnormalities. CA-MBC-EfficientNet-B2 can simultaneously consider the
relationships between different channels and different spatial positions. The utilization of the enhanced
MBConv module not only allows for parameter reduction, but it also allows further performance op-
timizations to be made to the model. By overcoming the performance limitations of a single network
and leveraging the features of multiple networks simultaneously, FusionNet efficiently extracts fea-
tures that in turn enhance the overall performance of the model. The experimental results showcased
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the efficacy of our proposed model, CA-MBC-EfficientNet-B2 and FusionNet, as a tool to realize the
accurate diagnoses of musculoskeletal abnormalities across all seven datasets of MURA. These find-
ings highlight the applicability of our model in the field of musculoskeletal abnormality diagnosis. The
lightweight characteristic of CA-MBC-EfficientNet-B2 makes it easy to deploy the model on mobile
devices, embedded devices and edge devices. FusionNet strikes a balance between performance and
complexity, avoiding the extreme case of low complexity but low performance. Although this study has
achieved certain research results in the area of musculoskeletal abnormality diagnosis, it cannot avoid
the inherent limitations of deep learning, namely low model interpretability. So our next research di-
rection will entail the use of some methods to improve the interpretability of the model to make up for
this shortcoming.
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