Research article

Event-triggered integral sliding mode control for uncertain networked linear control systems with quantization

  • Received: 17 June 2023 Revised: 10 August 2023 Accepted: 14 August 2023 Published: 21 August 2023
  • In this paper, the integral sliding mode (ISM, SM) controller is designed to address the problem of implementing non-periodic sampled data for a class of networked linear systems with matched and unmatched uncertainties. Due to the redesigned gain of the nominal controller, the feedback control used by the nominal controller guarantees the asymptotic stability of the uncertain networked linear system. The discontinuous control uses intermittent control based on the reaching law to achieve the finite-time reachability of practical SM band. Based on the defined measurement error, the event-triggered (ET) condition can be derived, and furthermore, it guarantees a sufficient condition for the existence of the actual SM. On this basis, a quantization scheme is added to further decrease the network transmission burden of the linear system. No Zeno behavior occurs in the system owing to the existence of a positive lower bound of inter-event time. Compared with the conventional integral sliding mode control (ISMC, SMC), the proposed control law can not only relieve the network burden, but also decrease the transmission energy loss. Finally, simulation results of a numerical example and a mass-spring damping system demonstrate the effectiveness of the proposed method.

    Citation: Xinggui Zhao, Bo Meng, Zhen Wang. Event-triggered integral sliding mode control for uncertain networked linear control systems with quantization[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 16705-16724. doi: 10.3934/mbe.2023744

    Related Papers:

  • In this paper, the integral sliding mode (ISM, SM) controller is designed to address the problem of implementing non-periodic sampled data for a class of networked linear systems with matched and unmatched uncertainties. Due to the redesigned gain of the nominal controller, the feedback control used by the nominal controller guarantees the asymptotic stability of the uncertain networked linear system. The discontinuous control uses intermittent control based on the reaching law to achieve the finite-time reachability of practical SM band. Based on the defined measurement error, the event-triggered (ET) condition can be derived, and furthermore, it guarantees a sufficient condition for the existence of the actual SM. On this basis, a quantization scheme is added to further decrease the network transmission burden of the linear system. No Zeno behavior occurs in the system owing to the existence of a positive lower bound of inter-event time. Compared with the conventional integral sliding mode control (ISMC, SMC), the proposed control law can not only relieve the network burden, but also decrease the transmission energy loss. Finally, simulation results of a numerical example and a mass-spring damping system demonstrate the effectiveness of the proposed method.



    加载中


    [1] K. Liu, E. Fridman, Y. Q. Xia, Networked Control under Communication Constraints: A Time-Delay Approach, Springer Singapore, 2020. https://doi.org/10.1007/978-981-15-4230-5
    [2] X. H. Ge, F. W. Yang, Q. L. Han, Distributed networked control systems: a brief overview, Inf. Sci., 380 (2017), 117–131. https://doi.org/10.1016/j.ins.2015.07.047 doi: 10.1016/j.ins.2015.07.047
    [3] M. S. Mahmoud, Networked control systems analysis and design: an overview, Arab. J. Sci. Eng., 41 (2016), 711–758. https://doi.org/10.1007/s13369-015-2024-z doi: 10.1007/s13369-015-2024-z
    [4] X. M. Zhang, Q. L. Han, X. H. Ge, D. Ding, L. Ding, D. Yue, et al., Networked control systems: a survey of trends and techniques, IEEE J. Autom. Sin., 105 (2019), 1–17. http://doi.org/10.1109/JAS.2019.1911651 doi: 10.1109/JAS.2019.1911651
    [5] C. Peng, F. Q. Li, A survey on recent advances in event-triggered communication and control, Inf. Sci., 457 (2018), 113–125. https://doi.org/10.1016/j.ins.2018.04.055 doi: 10.1016/j.ins.2018.04.055
    [6] P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, IEEE Trans. Autom., 52 (2007), 1680–1685. https://doi.org/10.1109/TAC.2007.904277 doi: 10.1109/TAC.2007.904277
    [7] R. Obermaisser, Event-triggered and time-triggered control paradigms, Springer, 22 (2005), 65–92. https://doi.org/10.1007/978-0-387-23044-3_4 doi: 10.1007/978-0-387-23044-3_4
    [8] W. P. M. H. Heemels, M. C. F. Donkers, A. R. Teel, Periodic event-triggered control for linear systems, IEEE Trans. Autom. Control., 58 (2013), 847–861. http://doi.org/10.1109/TAC.2012.2220443 doi: 10.1109/TAC.2012.2220443
    [9] T. F. Liu, P. P. Zhang, Z. P. Jiang, Robust event-triggered control of nonlinear systems, Springer, Singapore, 2020. https://doi.org/10.1007/978-981-15-5013-3
    [10] X. Y. Liu, K. B. Shi, J. Cheng, S. P. Wen, Y. J. Liu, Adaptive memory-based event-triggering resilient LFC for power system under DoS attack, Appl. Math. Comput., 451 (2023), 128041. https://doi.org/10.1016/j.amc.2023.128041 doi: 10.1016/j.amc.2023.128041
    [11] P. He, J. W. Wen, V. Stojanovic, F. Liu, X. L. Luan, Finite-time control of discrete-time semi-Markov jump linear systems: a self-triggered MPC approach, J. Frankl. Inst., 359 (2022), 6939–6957. https://doi.org/10.1016/j.jfranklin.2022.06.043 doi: 10.1016/j.jfranklin.2022.06.043
    [12] X. N. Song, N. N. Wu, S. Song, V. Stojanovic, Switching-like event-triggered state estimation for reaction–diffusion neural networks against DoS attacks, Neural Process Lett., (2023). https://doi.org/10.1007/s11063-023-11189-1 doi: 10.1007/s11063-023-11189-1
    [13] V. Djordjevic, H. F. Tao, X. N. Song, S. P. He, W. N. Gao, V. Stojanovic, Data-driven control of hydraulic servo actuator: an event-triggered adaptive dynamic programming approach, Math. Biosci. Eng., 20 (2023), 8561–8582. http://www.aimspress.com/article/doi/10.3934/mbe.2023376
    [14] B. C. Zheng, J. H. Park, Sliding mode control design for linear systems subject to quantization parameter mismatch, J. Frankl. Inst., 353 (2016), 37–53. https://doi.org/10.1016/j.jfranklin.2015.10.018 doi: 10.1016/j.jfranklin.2015.10.018
    [15] B. C. Zheng, G. H. Yang, Quantised feedback stabilisation of planar systems via switching-based sliding-mode control, IET Control Theory Appl., 6 (2012), 149–156. http://doi.org/10.1049/iet-cta.2010.0733 doi: 10.1049/iet-cta.2010.0733
    [16] C. X. Wang, J. W. Tang, B. P. Jiang, Z. T. Wu, Sliding-mode variable structure control for complex automatic systems: a survey, Math. Biosci. Eng., 19 (2022), 2616–2640. https://doi.org/10.3934/mbe.2022120 doi: 10.3934/mbe.2022120
    [17] W. X. Zhou, Y. Y. Wang, Y. Z. Liang, Sliding mode control for networked control systems: a brief survey, ISA Trans., 124 (2022), 249–259. https://doi.org/10.1016/j.isatra.2020.12.049 doi: 10.1016/j.isatra.2020.12.049
    [18] J. Meng, B. Zhang, T. D. Wei, X. Y. He, X. D. Li, Robust finite-time stability of nonlinear systems involving hybrid impulses with application to sliding-mode control, Math. Biosci. Eng., 20 (2023), 4198–4218. https://doi.org/10.3934/mbe.2023196 doi: 10.3934/mbe.2023196
    [19] J. Yang, S. H. Li, J. Y. Su, X. H. Yu, Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances, Automatica, 49 (2013), 2287–2291. http://dx.doi.org/10.1016/j.automatica.2013.03.026 doi: 10.1016/j.automatica.2013.03.026
    [20] A. K. Behera, B. Bandyopadhyay, M. Cucuzzella, A. Ferrara, X. H. Yu, A survey on event-triggered sliding mode control, IEEE J. Emerging Sel. Top. Ind. Electron., 2 (2020), 206–217. http://doi.org/10.1109/JESTIE.2021.3087938 doi: 10.1109/JESTIE.2021.3087938
    [21] B. Bandyopadhyay, A. K. Behera, Event-Triggered Sliding Mode Control, Springer Cham, 2018. https://doi.org/10.1007/978-3-319-74219-9
    [22] X. F. Fan, Z. S. Wang, Event-triggered integral sliding mode control for linear systems with disturbance, Syst. Control Lett., 138 (2020), 104669. https://doi.org/10.1016/j.sysconle.2020.104669 doi: 10.1016/j.sysconle.2020.104669
    [23] X. F. Fan, Z. S. Wang, Z. Shi, Event-triggered integral sliding mode control for uncertain fuzzy systems, Fuzzy Sets Syst., 416 (2021), 47–63. https://doi.org/10.1016/j.fss.2020.09.002 doi: 10.1016/j.fss.2020.09.002
    [24] Y. F. Niu, Q. Ling, Event-triggered sliding mode control for networked linear systems, J. Frankl. Inst., 360 (2023), 1978–1999. https://doi.org/10.1016/j.jfranklin.2022.12.055 doi: 10.1016/j.jfranklin.2022.12.055
    [25] F. D. Song, L. M. Wang, Q. Y. Wang, S. P. Wen, Finite/fixed-time practical sliding mode: an event-triggered approach, Inf. Sci., 631 (2023), 241–255. https://doi.org/10.1016/j.ins.2023.02.072 doi: 10.1016/j.ins.2023.02.072
    [26] Y. X. Wang, Y. T. Cao, Z. Y. Guo, T. W. Huang, S. P. Wen, Event-based sliding-mode synchronization of delayed memristive neural networks via continuous/periodic sampling algorithm, Appl. Math. Comput., 383 (2020), 125379. https://doi.org/10.1016/j.amc.2020.125379 doi: 10.1016/j.amc.2020.125379
    [27] B. C. Zheng, G. H. Yang, T. Li, Quantised feedback sliding mode control of linear uncertain systems, IET Control Theory Appl., 8 (2014), 479–487. https://doi.org/10.1049/iet-cta.2013.0359 doi: 10.1049/iet-cta.2013.0359
    [28] Y. Y. Xiong, Y. B. Gao, L. Yang, L. G. Wu, An integral sliding mode approach to distributed control of coupled networks with measurement quantization, Syst. Control Lett., 133 (2019), 104557. https://doi.org/10.1016/j.sysconle.2019.104557 doi: 10.1016/j.sysconle.2019.104557
    [29] B. Sun, Y. T. Cao, Z. Y. Guo, S. P. Wen, Synchronization of discrete-time recurrent neural networks with time-varying delays via quantized sliding mode control, Appl. Math. Comput., 375 (2020), 125093. https://doi.org/10.1016/j.amc.2020.125093 doi: 10.1016/j.amc.2020.125093
    [30] B. C. Zheng, X. H. Yu, Y. M. Xue, Quantized feedback sliding-mode control: an event-triggered approach, Automatica, 91 (2018), 126–135. https://doi.org/10.1016/j.automatica.2018.01.007 doi: 10.1016/j.automatica.2018.01.007
    [31] Y. Yan, S. H. Yu, C. Y. Sun, Quantization-based event-triggered sliding mode tracking control of mechanical systems, Inf. Sci., 523 (2020), 296–306. https://doi.org/10.1016/j.ins.2020.03.023 doi: 10.1016/j.ins.2020.03.023
    [32] M. Li, M. Liu, Y. C. Zhang, Fault-tolerant output feedback sliding mode control with event-triggered transmission and signal quantization, J. Frankl. Inst., 357 (2020), 1987–2007. https://doi.org/10.1016/j.jfranklin.2019.11.026 doi: 10.1016/j.jfranklin.2019.11.026
    [33] A. Yesmin, M. K. Bera, Design of event-based sliding mode controller with logarithmic quantized state measurement and delayed control update, ISA Trans., 124 (2022), 280–289. https://doi.org/10.1016/j.isatra.2020.07.014 doi: 10.1016/j.isatra.2020.07.014
    [34] A. Yesmin, M. K. Bera, Design of Event-Triggered Integral Sliding Mode Controller for Systems with Matched and Unmatched Uncertainty, Springer, Singapore, 2020. https://doi.org/10.1007/978-981-15-8613-2_6
    [35] Y. Hong, J. Huang, Y. S. Xu, On an output feedback finite-time stabilization problem, IEEE Trans. Autom. Control, 46 (2001), 305–309. http://doi.org/10.1109/9.905699 doi: 10.1109/9.905699
    [36] B. Bandyopadhyay, A. Behera, Event triggered sliding mode control: a new approach to control system design, Springer Cham, 2018. https://doi.org/10.1007/978-3-319-74219-9
    [37] G. H. Wen, M. Z. Q. Chen, X. H. Yu, Event-triggered master–slave synchronization with sampled-data communication, IEEE Trans. Circuits, 63 (2016), 304–308. http://doi.org/ 10.1109/TCSII.2015.2482158 doi: 10.1109/TCSII.2015.2482158
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(966) PDF downloads(135) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog