Theory article Special Issues

Design and stabilization analysis of luxury cruise with dynamic positioning systems based on sampled-data control


  • Received: 31 March 2023 Revised: 28 May 2023 Accepted: 16 June 2023 Published: 25 June 2023
  • This paper studies the sampled-data control issue for a luxury cruise (LC) with dynamic positioning system (DPS). The design method and mathematical model of LC is given. By constructing an improved time-dependent Lyapunov-Krasovskii function (LKF) by adding new useful terms, the sampling pattern is fully captured and less conservatism of the results are obtained. Based on the constructed the LKF, the new stability criterion is obtained and the sampled-data controller for LC with DPS is designed. Finally, an example is exhibited to prove that the proposed approach is valid and applicable.

    Citation: Zhe Zou, Minjie Zheng. Design and stabilization analysis of luxury cruise with dynamic positioning systems based on sampled-data control[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 14026-14045. doi: 10.3934/mbe.2023626

    Related Papers:

  • This paper studies the sampled-data control issue for a luxury cruise (LC) with dynamic positioning system (DPS). The design method and mathematical model of LC is given. By constructing an improved time-dependent Lyapunov-Krasovskii function (LKF) by adding new useful terms, the sampling pattern is fully captured and less conservatism of the results are obtained. Based on the constructed the LKF, the new stability criterion is obtained and the sampled-data controller for LC with DPS is designed. Finally, an example is exhibited to prove that the proposed approach is valid and applicable.



    加载中


    [1] H. R. Karimi, Y. Lu, Guidance and control methodologies for marine vehicles: A survey, Control Eng. Pract., 111 (2021), 104785. https://doi.org/10.1016/j.conengprac.2021.104785 doi: 10.1016/j.conengprac.2021.104785
    [2] H. Liang, L. Li, J. Ou, Coupled control of the horizontal and vertical plane motions of a semi-submersible platform by a dynamic positioning system, J. Mar. Sci. Technol., 20 (2015), 776–786. https://doi.org/10.1007/s00773-015-0322-5 doi: 10.1007/s00773-015-0322-5
    [3] M. C. Fang, Z. Y. Lee, Application of neuro-fuzzy algorithm to portable dynamic positioning control system for ships, Int. J. Nav. Archit. Ocean Eng., 8 (2016), 38–52. ttps://doi.org/10.1016/j.ijnaoe.2015.09.003 doi: 10.1016/j.ijnaoe.2015.09.003
    [4] G. Zhang, Y. Cai, W. Zhang, Robust neural control for dynamic positioning ships with the optimum-seeking guidance, IEEE Trans. Syst. Man Cybern. Syst., 47 (2017), 1500–1509. https://doi.org/10.1109/TSMC.2016.2628859 doi: 10.1109/TSMC.2016.2628859
    [5] W. E. Ngongi, J. Du, R. Wang, Robust fuzzy controller design for dynamic positioning system of ships, Int. J. Control Autom. Syst., 13 (2015), 1294–1305. https://doi.org/10.1007/s12555-014-0239-5 doi: 10.1007/s12555-014-0239-5
    [6] J. Li, G. Zhang, Q. Shan, W. Zhang, A novel cooperative design for USV-UAV systems: 3D mapping guidance and adaptive fuzzy control, IEEE Trans. Control Network Syst., 2022 (2022). https://doi.org/10.1109/TCNS.2022.3220705 doi: 10.1109/TCNS.2022.3220705
    [7] G. Zhang, J. Li, X. Jin, C. Liu, Robust adaptive neural control for wing-sail-assisted vehicle via the multiport event-triggered approach, IEEE Trans. Cybern., 52 (2021), 12916–12928. https://doi.org/10.1109/TCYB.2021.3091580 doi: 10.1109/TCYB.2021.3091580
    [8] Y. Wang, X. Yang, H. Yan, Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information, IEEE Trans. Ind. Electron., 66 (2019), 9439–9447. https://doi.org/10.1109/TIE.2019.2892696 doi: 10.1109/TIE.2019.2892696
    [9] Y. Wei, H. R. Karimi, S. Yang, New results on sampled-data output-feedback control of linear parameter-varying systems, Int. J. Robust Nonlinear Control, 32 (2022), 5070–5085. https://doi.org/10.1002/rnc.6099 doi: 10.1002/rnc.6099
    [10] Y. Wang, H. R. Karimi, H. K. Lam, H. Shen, An improved result on exponential stabilization of sampled-data fuzzy systems, IEEE Trans. Fuzzy Syst., 26 (2018), 3875–3883. https://doi.org/10.1109/TFUZZ.2018.2852281 doi: 10.1109/TFUZZ.2018.2852281
    [11] D. Zhang, L. Liu, G. Feng, Consensus of heterogeneous linear multiagent systems subject to aperiodic sampled-data and DoS attack, IEEE Trans. Cybern., 49 (2018), 1501–1511. https://doi.org/10.1109/TCYB.2018.2806387 doi: 10.1109/TCYB.2018.2806387
    [12] X. L. Zhu, B. Chen, D. Yue, Y. Wang, An improved input delay approach to stabilization of fuzzy systems under variable sampling, IEEE Trans. Fuzzy Syst., 20 (2012), 330–341. https://doi.org/10.1109/TFUZZ.2011.2174242 doi: 10.1109/TFUZZ.2011.2174242
    [13] Y. Wang, Y. Xia, P. Zhou, Fuzzy-model-based sampled-data control of chaotic systems: A fuzzy time-dependent Lyapunov–Krasovskii functional approach, IEEE Trans. Fuzzy Syst., 25 (2016), 1672–1684. https://doi.org/10.1109/TFUZZ.2016.2617378 doi: 10.1109/TFUZZ.2016.2617378
    [14] Y. Wang, P. Shi, On master-slave synchronization of Chaotic Lur'e systems using sampled-data control, IEEE Trans. Circuits Syst. II, 85 (2016), 981–992. https://doi.org/10.1007/s11071-016-2737-x doi: 10.1007/s11071-016-2737-x
    [15] W. H. Chen, Z. Wang, X. Lu, On sampled-data control for masterslave synchronization of chaotic Lur'e systems, IEEE Trans. Circuits Syst. II, 59 (2012), 515–519. https://doi.org/10.1109/TCSII.2012.2204114 doi: 10.1109/TCSII.2012.2204114
    [16] H. Xiao, Q. Zhu, H. R. Karimi, Stability of stochastic delay switched neural networks with all unstable subsystems: A multiple discretized Lyapunov-Krasovskii functionals method, Inf. Sci., 582 (2022), 302–315. https://doi.org/10.1016/j.ins.2021.09.027 doi: 10.1016/j.ins.2021.09.027
    [17] Z. G. Wu, P. Shi, H. Su, J. Chu, Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data, IEEE Trans. Cybern., 43 (2013), 1796–1806. https://doi.org/10.1109/TSMCB.2012.2230441 doi: 10.1109/TSMCB.2012.2230441
    [18] Z. G. Wu, P. Shi, H. Su, J. Chu, Local synchronization of chaotic neural networks with sampled-data and saturating actuators, IEEE Trans. Cybern., 44 (2014), 2635–2645. https://doi.org/10.1109/TCYB.2014.2312004 doi: 10.1109/TCYB.2014.2312004
    [19] H. R. Karimi, H. Gao. Mixed H2/H∞ output-feedback control of second-order neutral systems with time-varying state and input delays, ISA Trans., 47 (2008), 311–324. https://doi.org/10.1016/j.isatra.2008.04.002 doi: 10.1016/j.isatra.2008.04.002
    [20] F. Ding, T. Chen, Hierarchical identification of lifted state-space models for general dual-rate systems, IEEE Trans. Circuits Syst. I, 52 (2005), 1179–1187. https://doi.org/10.1109/TCSI.2005.849144 doi: 10.1109/TCSI.2005.849144
    [21] L. Hu, P. Shi, P. Frank, Robust sampled-data control for Markovian jump linear systems, Automatica, 42 (2006), 2025–2030. https://doi.org/10.1016/j.automatica.2006.05.029 doi: 10.1016/j.automatica.2006.05.029
    [22] K. Liu, E. Fridman. Wirtinger's inequality and Lyapunov-based sampled-data stabilization, Automatica, 48 (2012), 102–108. https://doi.org/10.1016/j.automatica.2011.09.029 doi: 10.1016/j.automatica.2011.09.029
    [23] Z. G. Wu, P. Shi, H. Y. Su, Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data, IEEE Trans. Cybern., 43 (2013), 796–1806. https://doi.org/10.1109/TSMCB.2012.2230441 doi: 10.1109/TSMCB.2012.2230441
    [24] E. Yucel, M. S. Ali, N. Gunasekaran, S. Arik, Sampled-data filtering of Takagi-Sugeno fuzzy neural networks with interval time-varying delays, Fuzzy Sets Syst., 316 (2017), 69–81. https://doi.org/10.1016/j.fss.2016.04.014 doi: 10.1016/j.fss.2016.04.014
    [25] S. Li, L. Yang, K. Li, Z. Gao, Robust sampled-data cruise control scheduling of high speed train, Transp. Res. Part C, 46 (2014), 274–283. https://doi.org/10.1016/j.trc.2014.06.004 doi: 10.1016/j.trc.2014.06.004
    [26] Y. Wang, Q. Wang, P. Zhou, D. Duan, Robust H∞ directional control for a sampled-data autonomous airship, J. Cent. South Univ., 21 (2014), 1339–1346. https://doi.org/10.1007/s11771-014-2071-8 doi: 10.1007/s11771-014-2071-8
    [27] M. Zheng, Y. Su, S. Yang, L. Li, Reliable fuzzy dynamic positioning tracking controller for unmanned surface vehicles based on aperiodic measurement information, Int. J. Fuzzy Syst., 25 (2023), 358–368. https://doi.org/10.1007/s40815-022-01414-9 doi: 10.1007/s40815-022-01414-9
    [28] Z. G. Wu, P. Shi, H. Su, R. Lu, Dissipativity-based sampled-data fuzzy control design and its application to truck-trailer system, IEEE Tran. Fuzzy Syst., 23 (2015), 1669–1679. https://doi.org/10.1109/TFUZZ.2014.2374192 doi: 10.1109/TFUZZ.2014.2374192
    [29] C. Qian, H. Du, S. Li, Global stabilization via sampled-data output feedback for a class of linearly uncontrollable and unobservable systems, IEEE Trans. Autom. Control, 61 (2016), 4088–4093. https://doi.org/10.1109/TAC.2016.2542238 doi: 10.1109/TAC.2016.2542238
    [30] C. Zhang, R. Jia, C. Qian, S. Li, Semi-global stabilization via linear sampled-data output feedback for a class of uncertain nonlinear systems, Int. J. Robust Nonlinear Control, 25 (2015), 2041–2061. https://doi.org/10.1002/rnc.3189 doi: 10.1002/rnc.3189
    [31] W. Zou, J. Guo, Z. Xiang, Sampled-data leader-following consensus of second-order non-linear multi-agent systems without velocity measurements, Int. J. Robust Nonlinear Control, 28 (2018), 5634–5651. https://doi.org/10.1002/rnc.4340 doi: 10.1002/rnc.4340
    [32] C. Zhang, C. Qian, S. Li, Global decentralized control of interconnected nonlinear systems by sampled-data output feedback, in Proceedings of 2013 American Control Conference, (2013), 6559–6564. https://doi.org/10.1109/ACC.2013.6580868
    [33] F. Yang, H. Zhang, Y. Wang, An enhanced input-delay approach to sampled-data stabilization of T–S fuzzy systems via mixed convex combination, Nonlinear Dyn., 75 (2014), 501–512. https://doi.org/10.1007/s11071-013-1080-8 doi: 10.1007/s11071-013-1080-8
    [34] H. Katayama, Nonlinear sampled-data stabilization of dynamically positioned ships, IEEE Trans. Control Syst. Technol., 18 (2010), 463–468. https://doi.org/10.1109/TCST.2009.2014876 doi: 10.1109/TCST.2009.2014876
    [35] H. Katayama, H. Aoki, Straight-line trajectory tracking control for sampled-data underactuated ships, IEEE Trans. Control Syst. Technol., 22 (2014), 1638–1645. https://doi.org/10.1109/TCST.2013.2280717 doi: 10.1109/TCST.2013.2280717
    [36] M. Zheng, Y. Zhou, S. Yang, L. Li, Robust H∞ control of neutral system for sampled-data dynamic positioning ships, IMA J. Math. Control Inf., 36 (2019), 1325–1345. https://doi.org/10.1093/imamci/dny029 doi: 10.1093/imamci/dny029
    [37] S. Yang, M. Zheng, H-infinity fault-tolerant control for dynamic positioning ships based on sampled-data, J. Control Eng. Appl. Inf., 20 (2018), 32–39.
    [38] M. Zheng, Y. Zhou, S. Yang, Robust fuzzy sampled-data control for dynamic positioning ships, J. Shanghai Jiaotong Univ., 23 (2018), 209–217. https://doi.org/10.1007/s12204-018-1931-z doi: 10.1007/s12204-018-1931-z
    [39] G. Chen, Y. Suo, M. Zheng, S. Yang, L. Li, Reliable tracking control of dynamic positioning ships based on aperiodic measurement information, J. Control Eng. Appl. Inf., 24 (2022), 80–89.
    [40] J. Sun, G. P. Liu, J. Chen, Delay-dependent stability and stabilization of neutral time-delay systems, Int. J. Robust Nonlinear Control, 19 (2009), 1364–1375. https://doi.org/10.1002/rnc.1384 doi: 10.1002/rnc.1384
    [41] H. B. Zeng, Y. He, M. Wu, J. She, Free-matrix-based integral inequality for stability analysis of systems with time-varying delay, IEEE Trans. Autom. Control, 60 (2015), 2768–2772. https://doi.org/10.1109/TAC.2015.2404271 doi: 10.1109/TAC.2015.2404271
    [42] T. H. Lee, J. H. Park, S. Xu, Relaxed conditions for stability of time-varying delay systems, Automatica, 75 (2017), 11–15. https://doi.org/10.1016/j.automatica.2016.08.011 doi: 10.1016/j.automatica.2016.08.011
    [43] P. Valanto, Y. P. Hong, Experimental investigation on ship wave added resistance in regular head, oblique, beam, and following waves, in The Twenty-fifth International Ocean and Polar Engineering Conference, 2015.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1056) PDF downloads(52) Cited by(3)

Article outline

Figures and Tables

Figures(10)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog