Research article

Adaptive filter method in Bendlet domain for biological slice images

  • Received: 21 February 2023 Revised: 15 April 2023 Accepted: 17 April 2023 Published: 25 April 2023
  • The biological cross-sectional images majorly consist of closed-loop structures, which are suitable to be represented by the second-order shearlet system with curvature (Bendlet). In this study, an adaptive filter method for preserving textures in the bendlet domain is proposed. The Bendlet system represents the original image as an image feature database based on image size and Bendlet parameters. This database can be divided into image high-frequency and low-frequency sub-bands separately. The low-frequency sub-bands adequately represent the closed-loop structure of the cross-sectional images and the high-frequency sub-bands accurately represent the detailed textural features of the images, which reflect the characteristics of Bendlet and can be effectively distinguished from the Shearlet system. The proposed method takes full advantage of this feature, then selects the appropriate thresholds based on the images' texture distribution characteristics in the database to eliminate noise. The locust slice images are taken as an example to test the proposed method. The experimental results show that the proposed method can significantly eliminate the low-level Gaussian noise and protect the image information compared with other popular denoising algorithms. The PSNR and SSIM obtained are better than other methods. The proposed algorithm can be effectively applied to other biological cross-sectional images.

    Citation: Yafei Liu, Linqiang Yang, Hongmei Ma, Shuli Mei. Adaptive filter method in Bendlet domain for biological slice images[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 11116-11138. doi: 10.3934/mbe.2023492

    Related Papers:

  • The biological cross-sectional images majorly consist of closed-loop structures, which are suitable to be represented by the second-order shearlet system with curvature (Bendlet). In this study, an adaptive filter method for preserving textures in the bendlet domain is proposed. The Bendlet system represents the original image as an image feature database based on image size and Bendlet parameters. This database can be divided into image high-frequency and low-frequency sub-bands separately. The low-frequency sub-bands adequately represent the closed-loop structure of the cross-sectional images and the high-frequency sub-bands accurately represent the detailed textural features of the images, which reflect the characteristics of Bendlet and can be effectively distinguished from the Shearlet system. The proposed method takes full advantage of this feature, then selects the appropriate thresholds based on the images' texture distribution characteristics in the database to eliminate noise. The locust slice images are taken as an example to test the proposed method. The experimental results show that the proposed method can significantly eliminate the low-level Gaussian noise and protect the image information compared with other popular denoising algorithms. The PSNR and SSIM obtained are better than other methods. The proposed algorithm can be effectively applied to other biological cross-sectional images.



    加载中


    [1] Q. Ma, S. Mei, D. Zhu, Application of microscopic image segmentation technology in Locust-Control pesticide research, in 2010 Second International Workshop on Education Technology and Computer Science, IEEE, 3 (2010), 15–18. https://doi.org/10.1109/ETCS.2010.178
    [2] L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259–268.
    [3] C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, in Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), (1998), 839–846. https://doi.org/10.1109/ICCV.1998.710815
    [4] W. C. K. Wong, A. C. S. Chung, S. C. H. Yu, Trilateral filtering for biomedical images, in 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), (2004), 820–823. https://doi.org/10.1109/ISBI.2004.1398664
    [5] A. E. Mahdaoui, A. Ouahabi, M. S. Moulay, Image denoising using a compressive sensing approach based on regularization constraints, Sensors, 22 (2022), 2199. https://doi.org/10.3390/s22062199 doi: 10.3390/s22062199
    [6] A. Buades, B. Coll, J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), 490–530. https://doi.org/10.1137/040616024 doi: 10.1137/040616024
    [7] J. Froment, Parameter-free fast pixelwise non-local means denoising, Image Process. On Line, 4 (2014), 300–326. https://doi.org/10.5201/ipol.2014.120 doi: 10.5201/ipol.2014.120
    [8] P. Zhang, Y. Liu, Z. Gui, Y. Chen, L. Jia, A region-adaptive non-local denoising algorithm for low-dose computed tomography images, Math. Biosci. Eng., 20 (2023), 2831–2846. https://doi.org/10.3934/mbe.2023133 doi: 10.3934/mbe.2023133
    [9] Y. Hou, C. Zhao, D. Yang, Y. Cheng, "Comments on" image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 20 (2010), 268–270. https://doi.org/10.1109/TIP.2010.2052281 doi: 10.1109/TIP.2010.2052281
    [10] H. Yin, Y. Gong, G. Qiu, Side window filtering, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2019), 8758–8766.
    [11] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, preprint, arXiv: 1409.1556. https://doi.org/10.48550/arXiv.1409.1556
    [12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., Going deeper with convolutions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
    [13] S. Anwar, N. Barnes, Real image denoising with feature attention, in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), (2019), 3155–3164.
    [14] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu, Residual dense network for image restoration, IEEE Trans. Pattern Anal. Mach. Intell., 43 (2020), 2480–2495. https://doi.org/10.1109/TPAMI.2020.2968521 doi: 10.1109/TPAMI.2020.2968521
    [15] P. Isola, J. Zhu, T. Zhou, A. Efros, Image-to-image translation with conditional adversarial networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 1125–1134.
    [16] D. Valsesia, G. Fracastoro, E. Magli, Deep graph-convolutional image denoising, IEEE Trans. Image Process., 29 (2020), 8226–8237. https://doi.org/10.1109/TIP.2020.3013166 doi: 10.1109/TIP.2020.3013166
    [17] O. Moussa, N. Khlifa, F. Morain-Nicolier, An effective shearlet-based anisotropic diffusion technique for despeckling ultrasound medical images, Multimedia Tools Appl., 2022 (2022), 1–24. https://doi.org/10.1007/s11042-022-13642-0 doi: 10.1007/s11042-022-13642-0
    [18] K. Rao, M. Bansal, G. Kaur, An effective CT medical image enhancement system based on DT-CWT and adaptable morphology, Circuits Syst. Signal Process., 2022 (2022), 1–29. https://doi.org/10.1007/s00034-022-02163-8 doi: 10.1007/s00034-022-02163-8
    [19] W. El-Shafai, A. Mahmoud, A. Ali, E. S. El-Rabaie, T. Taha, O. Zahran, et al., Deep CNN model for multimodal medical image denoising, Comput. Mater. Contin., 73 (2022), 3795–3814. https://doi.org/10.32604/cmc.2022.029134 doi: 10.32604/cmc.2022.029134
    [20] X. Jia, D. Meng, X. Zhang, X. Feng, PDNet: Progressive denoising network via stochastic supervision on reaction-diffusion–advection equation, Inf. Sci., 610 (2022), 345–358. https://doi.org/https://doi.org/10.1016/j.ins.2022.07.138 doi: 10.1016/j.ins.2022.07.138
    [21] J. Mazloum, S. M. Hadian, A time-splitting local meshfree approach for time-fractional anisotropic diffusion equation: application in image denoising, Adv. Contin. Discrete Models, 2022 (2022), 1–19. https://doi.org/10.1186/s13662-022-03728-2 doi: 10.1186/s13662-022-03728-2
    [22] S. Mei, M. Liu, A. Kudreyko, P. Cattani, D. Baikov, F. Villecco, Bendlet transform based adaptive denoising method for microsection images, Entropy, 24 (2022), 869. https://doi.org/10.3390/e24070869 doi: 10.3390/e24070869
    [23] S. Gai, Multichannel image denoising using color monogenic curvelet transform, Soft Comput., 22 (2018), 635–644. https://doi.org/10.1007/s00500-016-2361-1 doi: 10.1007/s00500-016-2361-1
    [24] Y. Zhang, Y. Wei, S. Mei, M. Zhu, Application of multi-scale interval interpolation wavelet in beef image of marbling segmentation, Trans. Chin. Soc. Agric. Eng., 32 (2016), 296–304.
    [25] D. L. Donoho, Wedgelets: Nearly minimax estimation of edges, Ann. Stat., 27 (1999), 859–897.
    [26] H. S. Jung, M. H. Sunwoo, Texture-based block partitioning method for motion compensated frame interpolation, SpringerPlus, 5 (2016), 1–17. https://doi.org/10.1186/s40064-016-3504-7 doi: 10.1186/s40064-016-3504-7
    [27] D. L. Donoho, X. Huo, Beamlets and multiscale image analysis, Multiscale Multiresolution Methods, 2002 (2002), 149–196.
    [28] B. Hou, F. Liu, L. Jiao, Linear feature detection based on ridgelet, Sci. China Ser. E: Technol. Sci., 46 (2003), 141–152. https://doi.org/10.1360/03ye9015 doi: 10.1360/03ye9015
    [29] E. J. Candes, D. L. Donoho, Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges, Stanford University, 2000.
    [30] M. Arif, G. Wang, Fast curvelet transform through genetic algorithm for multimodal medical image fusion, Soft Comput., 24 (2020), 1815–1836. https://doi.org/10.1007/s00500-019-04011-5 doi: 10.1007/s00500-019-04011-5
    [31] E. Le Pennec, S. Mallat, Image compression with geometrical wavelets, in Proceedings 2000 International Conference on Image Processing (Cat. No. 00CH37101), 1 (2000), 661–664. https://doi.org/10.1109/ICIP.2000.901045
    [32] E. Le Pennec, S. Mallat, Sparse geometric image representations with bandelets, IEEE Trans. Image Process., 14 (2005), 423–438. https://doi.org/10.1109/TIP.2005.843753 doi: 10.1109/TIP.2005.843753
    [33] M. N. Do, M. Vetterli, The contourlet transform: an efficient directional multiresolution image representation, IEEE Trans. Image Process., 14 (2005), 2091–2106. https://doi.org/10.1109/TIP.2005.859376 doi: 10.1109/TIP.2005.859376
    [34] G. Kutyniok, W. Q. Lim, R. Reisenhofer, Shearlab 3D: Faithful digital shearlet transforms based on compactly supported shearlets, ACM Trans. Math. Software, 42 (2016), 1–42. https://doi.org/10.1145/2740960 doi: 10.1145/2740960
    [35] S. Alinsaif, J. Lang, Texture features in the Shearlet domain for histopathological image classification, BMC Med. Inf. Decis. Making, 20 (2020), 1–19. https://doi.org/10.1186/s12911-020-01327-3 doi: 10.1186/s12911-020-01327-3
    [36] C. Lessig, P. Petersen, M. Schäfer, Bendlets: A second-order shearlet transform with bent elements, Appl. Comput. Harmon. Anal., 46 (2019), 384–399. https://doi.org/10.1016/j.acha.2017.06.002 doi: 10.1016/j.acha.2017.06.002
    [37] S. Poovizhi, T. R. G. Babu, R. Praveena, Certain investigations on melanoma detection using non-subsampled bendlet transform with different classifiers, Mol. Cell. Biomech., 18 (2021), 201–219. https://doi.org/10.32604/mcb.2021.017984 doi: 10.32604/mcb.2021.017984
    [38] A. Maalouf, P. Carre, B. Augereau, C. Fernandez-Maloigne, A bandelet-based inpainting technique for clouds removal from remotely sensed images, IEEE Trans. Geosci. Remote Sens., 47 (2009), 2363–2371. https://doi.org/10.1109/TGRS.2008.2010454 doi: 10.1109/TGRS.2008.2010454
    [39] M. Ferroukhi, A. Ouahabi, M. Attari, Y. Habchi, A. Taleb-Ahmed, Medical video coding based on 2nd-generation wavelets: performance evaluation, Electronics, 8 (2019), 88. https://doi.org/10.3390/electronics8010088 doi: 10.3390/electronics8010088
    [40] H. Wang, M. Zhu, L. Li, L. Wang, H. Zhao, S. Mei, Regional weed identification method from wheat field based on unmanned aerial vehicle image and shearlets, Trans. Chin. Soc. Agric. Eng., 33 (2017), 99–106.
    [41] T. Fink, Higher order analysis of the geometry of singularities using the Taylorlet transform, Adv. Comput. Math., 45 (2019), 675–705. https://doi.org/10.1007/s10444-018-9635-3 doi: 10.1007/s10444-018-9635-3
    [42] H. Wang, J. Liu, L. Liu, M. Zhao, S. Mei, Coupling technology of OpenSURF and Shannon-Cosine wavelet interpolation for locust slice images inpainting, Comput. Electron. Agric., 198 (2022), 107110. https://doi.org/10.1016/j.compag.2022.107110 doi: 10.1016/j.compag.2022.107110
    [43] S. Mei, W. Gao, Shannon-Cosine wavelet spectral method for solving fractional Fokker–Planck equations, Int. J. Wavelets Multiresolution Inf. Process., 16 (2018), 1850021. https://doi.org/10.1142/S0219691318500212 doi: 10.1142/S0219691318500212
    [44] L. Liu, M. Liu, K. Meng, L. Yang, M. Zhao, S. Mei, Camouflaged locust segmentation based on PraNet, Comput. Electron. Agric., 198 (2022), 107061. https://doi.org/10.1016/j.compag.2022.107061 doi: 10.1016/j.compag.2022.107061
    [45] T. R. Ganesh Babu, An efficient skin cancer diagnostic system using Bendlet Transform and support vector machine, Anais da Academia Brasileira de Ciências, 92 (2020), 1–12. https://doi.org/10.1590/0001-3765202020190554
    [46] R. Kushol, M. H. Kabir, M. Abdullah-Al-Wadud, M. S. Islam, Retinal blood vessel segmentation from fundus image using an efficient multiscale directional representation technique Bendlets, Math. Biosci. Eng., 17 (2020), 7751–7771. https://doi.org/10.3934/mbe.2020394 doi: 10.3934/mbe.2020394
    [47] S. Mei, K. Chen, S. Zhang, Quasi Shannon wavelet numerical solution of two-point boundary value problems, J. China Agric. Univ., 7 (2002), 12–16.
    [48] D. L. Donoho, De-noising by soft-thresholding, IEEE Trans. Inf. Theory, 41 (1995), 613–627. https://doi.org/10.1109/18.382009 doi: 10.1109/18.382009
    [49] A. Ouahabi, A review of wavelet denoising in medical imaging, in 2013 8th International Workshop on Systems, Signal Processing and Their Applications (WoSSPA), (2013), 19–26. https://doi.org/10.1109/WoSSPA.2013.6602330
    [50] A. M. Atto, Y. Berthoumieu, Wavelet packets of nonstationary random processes: Contributing factors for stationarity and decorrelation, IEEE Trans. Inf. Theory, 58 (2011), 317–330. https://doi.org/10.1109/TIT.2011.2167496 doi: 10.1109/TIT.2011.2167496
    [51] R. Abazari, M. Lakestani, A hybrid denoising algorithm based on shearlet transform method and Yaroslavsky's filter, Multimedia Tools Appl., 77 (2018), 17829–17851. https://doi.org/10.1007/s11042-018-5648-7 doi: 10.1007/s11042-018-5648-7
    [52] Z. Mousavi, M. Lakestani, M. Razzaghi, Combined shearlet shrinkage and total variation minimization for image denoising, Iran. J. Sci. Technol. Trans. A: Sci., 42 (2018), 31–37. https://doi.org/10.1007/s40995-017-0327-5 doi: 10.1007/s40995-017-0327-5
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1135) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Figures(17)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog