It is well known that relocation strategies in ecology can make the difference between extinction and persistence. We consider a reaction-advection-diffusion framework to analyze movement strategies in the context of species which are subject to a strong Allee effect. The movement strategies we consider are a combination of random Brownian motion and directed movement through the use of an environmental signal. We prove that a population can overcome the strong Allee effect when the signals are super-harmonic. In other words, an initially small population can survive in the long term if they aggregate sufficiently fast. A sharp result is provided for a specific signal that can be related to the Fokker-Planck equation for the Orstein-Uhlenbeck process. We also explore the case of pure diffusion and pure aggregation and discuss their benefits and drawbacks, making the case for a suitable combination of the two as a better strategy.
Citation: Chris Cosner, Nancy Rodríguez. On the Allee effect and directed movement on the whole space[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 8010-8030. doi: 10.3934/mbe.2023347
It is well known that relocation strategies in ecology can make the difference between extinction and persistence. We consider a reaction-advection-diffusion framework to analyze movement strategies in the context of species which are subject to a strong Allee effect. The movement strategies we consider are a combination of random Brownian motion and directed movement through the use of an environmental signal. We prove that a population can overcome the strong Allee effect when the signals are super-harmonic. In other words, an initially small population can survive in the long term if they aggregate sufficiently fast. A sharp result is provided for a specific signal that can be related to the Fokker-Planck equation for the Orstein-Uhlenbeck process. We also explore the case of pure diffusion and pure aggregation and discuss their benefits and drawbacks, making the case for a suitable combination of the two as a better strategy.
[1] | W. C. Allee, Animal Aggregations: A Study in General Sociology, University of Chicago Press, Chicago, 1931. |
[2] | V. Krivan, The Allee-type ideal free distribution, J. Math. Biol., 69 (2013), 1497–1513. https://doi.org/10.1007/s00285-013-0742-y doi: 10.1007/s00285-013-0742-y |
[3] | W. C. Allee, E. S. Bowen, Studies in animal aggregations: Mass protection against colloidal silver among goldfishes, J. Exp. Zool., 61 (1932), 185–207. https://doi.org/10.1002/jez.1400610202 doi: 10.1002/jez.1400610202 |
[4] | G. Livadiotis, L. Assas, S. Elaydi, E. Kwessi, D. Ribble, Competition models with Allee effects, 20 (2014), 1127–1151. http://dx.doi.org/10.1080/10236198.2014.897341 |
[5] | E. Angulo, G. M. Luque, S. D. Gregory, J. W. Wenzel, C. Bessa-Gomes, L. Berec, et al., Allee effects in social species, J. Anim. Ecol., 87 (2018), 47–58. |
[6] | A. J. Ekanayake, D. B. Ekanayake, A seasonal SIR metapopulation model with an Allee effect with application to controlling plague in prairie dog colonies, J. Biol. Dyn., 9 (2015), 262–290. https://doi.org/10.1080/17513758.2014.978400 doi: 10.1080/17513758.2014.978400 |
[7] | G. Sempo, S. Canonge, J. L. Deneubourg, From aggregation to dispersion: How habitat fragmentation prevents the emergence of consensual decision making in a group, PLoS ONE, 8 (2013). https://doi.org/10.1371/journal.pone.0078951 doi: 10.1371/journal.pone.0078951 |
[8] | R. Cantrell, C. Cosner, Spatial ecology via reaction-diffusion equations, John Wiley & Sons, West Sussex, 2003. |
[9] | A. P. Ramakrishnan, Dispersal-Migration, in Encyclopedia of Ecology, (2008), 185–191. |
[10] | J. Bedrossian, N. Rodríguez, Inhomogeneous Patlak-Keller-Segel models and aggregation equations with nonlinear diffusion in Rd, DCDS-B, 19 (2014), 1–33. https://doi.org/10.3934/dcdsb.2014.19.1279 doi: 10.3934/dcdsb.2014.19.1279 |
[11] | A. Bertozzi, D. Slepcev, Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion, Commun. Pure Appl. Anal., 9 (2010), 1617–1637. https://doi.org/10.3934/cpaa.2010.9.1617 doi: 10.3934/cpaa.2010.9.1617 |
[12] | G. Kaib, Stationary states of an aggregation equation with degenerate diffusion and bounded attractive potential, SIAM J. Math. Anal., 49 (2017), 272–296. https://doi.org/10.1137/16M107245 doi: 10.1137/16M107245 |
[13] | D. Li, X. Zhang, On a nonlocal aggregation model with nonlinear diffusion, Discrete Contin. Dyn. Syst., 27 (2010), 301–323. https://doi.org/10.3934/dcds.2010.27.301 doi: 10.3934/dcds.2010.27.301 |
[14] | J. Bedrossian, Global minimizers for free energies of subcritical aggregation equations with degenerate diffusion, Appl. Math. Lett., 24 (2011), 1927–1932. https://doi.org/10.1016/j.aml.2011.05.022 doi: 10.1016/j.aml.2011.05.022 |
[15] | C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst.-Ser. A, 34 (2014), 1701–1745. https://doi.org/10.3934/dcds.2014.34.1701 doi: 10.3934/dcds.2014.34.1701 |
[16] | R. S. Cantrell, C. Cosner, Conditional persistence in logistic models via nonlinear diffusion, Proc. R. Soc. Edinburgh Sect. A: Math., 132 (2002), 267–281. https://doi.org/10.1017/S0308210500001621 doi: 10.1017/S0308210500001621 |
[17] | A. Astudillo Fernandez, T. Hance, J. L. Deneubourg, Interplay between Allee effects and collective movement in metapopulations, Oikos, 121 (2012), 813–822. https://doi.org/10.1111/j.1600-0706.2011.20181.x doi: 10.1111/j.1600-0706.2011.20181.x |
[18] | D. C. Speirs, W. Gurney, Population persistence in rivers and estuaries, Ecol. Soc. Am., 82 (2001), 1219–1237. https://doi.org/10.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2 doi: 10.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2 |
[19] | Y. Jin, M. A. Lewis, Seasonal influences on population spread and persistence in streams: Spreading speeds, J. Math. Biol., 65 (2011), 403–439. |
[20] | F. Lutscher, M. A. Lewis, E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68 (2006), 2129–2160. https://doi.org/10.1007/s11538-006-9100-1 doi: 10.1007/s11538-006-9100-1 |
[21] | F. Lutscher, R. M. Nisbet, E. Pachepsky, Population persistence in the face of advection, Theor. Ecol., 3 (2010), 271–284. https://doi.org/10.1007/s12080-009-0068-y doi: 10.1007/s12080-009-0068-y |
[22] | F. Lutscher, E. Pachepsky, M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), 749–772. https://doi.org/10.1137/05063615 doi: 10.1137/05063615 |
[23] | Y. Wang, J. Shi, J. Wang, Persistence and extinction of population in reaction-diffusion-advection model with strong Allee effect growth, J. Math. Biol., 78 (2019), 2093–2140. https://doi.org/10.1007/s00285-019-01334-7 doi: 10.1007/s00285-019-01334-7 |
[24] | F. Belgacem, C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment, Can. Appl. Math. Q., 3 (1995), 379–397. |
[25] | C. Cosner, Y. Lou, Does movement toward better environments always benefit a population, J. Math. Anal. Appl., 277 (2003), 489–503. https://doi.org/10.1016/S0022-247X(02)00575-9 doi: 10.1016/S0022-247X(02)00575-9 |
[26] | P. Grindrod, Models of individual aggregation or clustering in single and multi-species communities, J. Math. Biol., 26 (1988), 651–660. https://doi.org/10.1007/BF00276146 doi: 10.1007/BF00276146 |
[27] | V. Padrón, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, Trans. Am. Math. Soc., 356 (2004), 2739–2756. |
[28] | S. M. Flaxman, Y. Lou, Tracking prey or tracking the prey's resource? Mechanisms of movement and optimal habitat selection by predators, J. Theor. Biol., 256 (2009), 187–200. https://doi.org/10.1016/j.jtbi.2008.09.024 doi: 10.1016/j.jtbi.2008.09.024 |
[29] | C. Cosner, M. Winkler, Well-posedness and qualitative properties of a dynamical model for the ideal free distribution, J. Math. Biol., 69 (2013), 1343–1382. https://doi.org/10.1007/s00285-013-0733-z doi: 10.1007/s00285-013-0733-z |
[30] | Y. Lou, F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319–1342. https://doi.org/10.1007/s00285-013-0730-2 doi: 10.1007/s00285-013-0730-2 |
[31] | C. Cosner, N. Rodriguez, The effect of directed movement on the strong Allee effect, SIAM J. Appl. Math., 81 (2021), 407–433. https://doi.org/10.1137/20M1330178 doi: 10.1137/20M1330178 |
[32] | M. Krzyżański, On the solutions of equations of the parabolic type determined in an unlimited region, Bull. Am. Math. Soc., 47 (1941), 911–915. |
[33] | X. Chen, R. Hambrock, Y. Lou, Evolution of conditional dispersal: A reaction-diffusion-advection model, J. Math. Biol., 57 (2008), 361–386. https://doi.org/10.1007/s00285-008-0166-2 doi: 10.1007/s00285-008-0166-2 |
[34] | J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196–218. https://doi.org/10.1093/biomet/38.1-2.196 doi: 10.1093/biomet/38.1-2.196 |
[35] | V. Volpert, S. Petrovskii, Reaction–diffusion waves in biology, Phys. Life Rev., 6 (2009), 267–310. http://dx.doi.org/10.1016/j.plrev.2009.10.002 doi: 10.1016/j.plrev.2009.10.002 |
[36] | A. J. Perumpanani, J. A. Sherratt, J. Norbury, H. M. Byrne, A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion, Physica D, 126 (1999), 145–159. https://doi.org/10.1016/S0167-2789(98)00272-3 doi: 10.1016/S0167-2789(98)00272-3 |
[37] | P. W. Bates, P. Fife, X. Ren, X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138 (1997), 105–136. https://doi.org/10.1007/s002050050037 doi: 10.1007/s002050050037 |
[38] | D. G. Aronson, H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, Springer, Berlin, (1975), 5–49. https://doi.org/10.1007/BFb0070595 |
[39] | A. Zlatos, Sharp transition between extinction and propagation of reaction, J. Am. Math. Soc., 19 (2005), 251–263. |
[40] | M. Schienbein, K. Franke, H. Gruler, Random walk and directed movement: comparison between inert particles and self-organized molecular machines, Phys. Rev. E, 49 (1994), 5462–5472. https://doi.org/10.1103/PhysRevE.49.5462 doi: 10.1103/PhysRevE.49.5462 |
[41] | G. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co. Inc., River Edge, NJ., 1996. |
[42] | C. Cosner, Asymptotic behavior of solutions of second order parabolic partial differential equations with unbounded coefficients, J. Differ. Equations, 35 (1980), 407–428. https://doi.org/10.1016/0022-0396(80)90036-4 doi: 10.1016/0022-0396(80)90036-4 |
[43] | P. Besela, On solutions of Fourier's first problem for a system of non-linear equations in an unbounded domain, Ann. Pol. Math., 13 (1963), 247–265. |
[44] | D. G. Aronson, H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978), 33–76. |
[45] | G. E. Uhlenbeck, L. S. Ornstein, On the theory of the Brownian motion, Phys. Rev., 36 (1930), 823–841. https://doi.org/10.1103/PhysRev.36.823 doi: 10.1103/PhysRev.36.823 |
[46] | T. Björk, Arbitrage Theory in Continuous Time, Oxford University Press, 2009. |
[47] | C. L. MacLeod, Ž. Ivezić, C. S. Kochanek, S. Kozłlowski, B. Kelly, E. Bullock, et al., Modeling the time variability of SDSS Stripe 82 quasars as a damped random walk, Astrophys. J., 721 (2010), 1014–1033. https://doi.org/10.1088/0004-637X/721/2/1014 doi: 10.1088/0004-637X/721/2/1014 |
[48] | E. P. Martins, Estimating the rate of phenotypic evolution from comparative data, Am. Nat., 144 (1994), 193–209. |
[49] | R. S. Cantrell, C. Cosner, Y. Lou, Advection-mediated coexistence of competing species, Proc. R. Soc. Edinburgh Sec. A: Math., 137 (2007), 497–518. https://doi.org/10.1017/S0308210506000047 doi: 10.1017/S0308210506000047 |
[50] | K. Y. Lam, W. M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst., 28 (2010), 1051–1067. https://doi.org/10.3934/dcds.2010.28.1051 doi: 10.3934/dcds.2010.28.1051 |
[51] | K. J. Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Differ. Equations, 250 (2011), 161–181. https://doi.org/10.1016/j.jde.2010.08.028 doi: 10.1016/j.jde.2010.08.028 |
[52] | V. Giunta, T. Hillen, M. Lewis, J. R. Potts, Local and global existence for nonlocal multispecies advection-diffusion models, SIAM J. Appl. Dyn. Syst., 21 (2022), 1686–1708. https://doi.org/10.1137/21M1425992 doi: 10.1137/21M1425992 |
[53] | J. R. Potts, M. A. Lewis, How memory of direct animal interactions can lead to territorial pattern formation, J. R. Soc. Interface, 13 (2016). https://doi.org/10.1098/rsif.2016.0059 doi: 10.1098/rsif.2016.0059 |
[54] | N. P. Taylor, H. Kim, A. L. Krause, R. A. Van Gorder, A non-local cross-diffusion model of population dynamics Ⅰ: Emergent spatial and spatiotemporal patterns, Bull. Math. Biol., 82 (2020). https://doi.org/10.1007/s11538-020-00786-z doi: 10.1007/s11538-020-00786-z |