Theory article Special Issues

A new Tseng method for supply chain network equilibrium model


  • Received: 30 December 2022 Revised: 02 February 2023 Accepted: 07 February 2023 Published: 21 February 2023
  • To solve the equilibrium problem of the supply chain network, a new subgradient extragradient method is introduced. The proposal achieves adaptive parameter selection, and supports a one-step subgradient projection operator, which can theoretically reduce the computational complexity of the algorithm. The introduction of subgradient projection operators makes the calculation of algorithms easier, and transforms the projection difficulty problem into how to find suitable sub-differential function problems. The given convergence proof further shows the advantages of the proposed algorithm. Finally, the presented algorithm is operated to a concrete supply chain network model. The comparisons show the proposed algorithm is better than other methods in term of CPU running time and iteration steps.

    Citation: Zhuang Shan, Leyou Zhang. A new Tseng method for supply chain network equilibrium model[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 7828-7844. doi: 10.3934/mbe.2023338

    Related Papers:

  • To solve the equilibrium problem of the supply chain network, a new subgradient extragradient method is introduced. The proposal achieves adaptive parameter selection, and supports a one-step subgradient projection operator, which can theoretically reduce the computational complexity of the algorithm. The introduction of subgradient projection operators makes the calculation of algorithms easier, and transforms the projection difficulty problem into how to find suitable sub-differential function problems. The given convergence proof further shows the advantages of the proposed algorithm. Finally, the presented algorithm is operated to a concrete supply chain network model. The comparisons show the proposed algorithm is better than other methods in term of CPU running time and iteration steps.



    加载中


    [1] G. Stampacchia, Formes bilinaires coercives sur les ensembles convexes, C. R. Hebd. Seances Acad. Sci., 258 (1964), 4413.
    [2] M. E. Porter, Competitive Advantage: Creating and Sustaining Superior Performance, $2^{nd}$ edition, Free Press, New York, 1998.
    [3] S. Ma, Y. F. Wang, Y. Lin, The challenge of supply chain management to traditional manufacturing mode, J. Huazhong Univ. Sci. Technol. (Soc. Sci. Ed.), 2 (1998), 66–68. https://doi.org/10.19648/j.cnki.jhustss1980.1998.02.015 doi: 10.19648/j.cnki.jhustss1980.1998.02.015
    [4] G. Ricardo, M. Aangel, Network equilibrium with combined modes: Models and solution algorithms, Transp. Res. Part B: Methodol., 39 (2005), 223–254. https://doi.org/10.1016/j.trb.2003.05.002 doi: 10.1016/j.trb.2003.05.002
    [5] Zhihu user Ldcu58, The impact of supply chains on businesses, 2021. Available from: https://zhuanlan.zhihu.com/p/355983986#:
    [6] P. Daniele, A. Maugeri, Variational inequalities and discrete and continuum models of network equilibrium problems, Math. Comput. Modell., 35 (2002), 689–708. https://doi.org/10.1016/S0895-7177(02)80030-9 doi: 10.1016/S0895-7177(02)80030-9
    [7] A. A. Goldstein, Convex programming in Hilbert space, Bull. Amer. Math. Soc., 70 (1964), 709–710. https://doi.org/10.1090/S0002-9904-1964-11178-2 doi: 10.1090/S0002-9904-1964-11178-2
    [8] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000). https://doi.org/10.1137/S0363012998338806 doi: 10.1137/S0363012998338806
    [9] Y. Censor, D. Reem, M. Zakoon, A generalized block-iterative projection method for the common fixed point problem induced by cutters, J. Glob. Optim., 84 (2022), 967–987. https://doi.org/10.1007/s10898-022-01175-7 doi: 10.1007/s10898-022-01175-7
    [10] Y. Censor, E. Levy, Limits of eventual families of sets with application to algorithms for the common fixed point problem, Set-valued Var. Anal., 30 (2022), 1077–1088. https://doi.org/10.1007/s11228-022-00635-2 doi: 10.1007/s11228-022-00635-2
    [11] A. Cegielski, Y. Censor, On componental operators in Hilbert space, Numer. Funct. Anal. Optim., 42 (2021), 1555–1571. https://doi.org/10.1080/01630563.2021.2006695 doi: 10.1080/01630563.2021.2006695
    [12] D. T. V. An, V. T. Huong, H. K. Xu, Differential stability of discrete optimal control problems with possibly nondifferentiable costs, Appl. Math. Optim., 86 (2022). https://doi.org/10.1007/s00245-022-09905-9 doi: 10.1007/s00245-022-09905-9
    [13] L. C. Ceng, J. C. Yao, Mann-type inertial subgradient extragradient rules for variational inequalities and common fixed points of nonexpansive and quasi-nonexpansive mappings, Axioms, 10 (2021), 67. https://doi.org/10.3390/axioms10020067 doi: 10.3390/axioms10020067
    [14] L. C. Ceng, C. S. Fong, On strong convergence theorems for a viscosity-type extragradient method, Filomat, 35 (2021), 1033–1043. https://doi.org/10.2298/FIL2103033C doi: 10.2298/FIL2103033C
    [15] L. C. Ceng, A. Petrusel, X. Qin, J. C. Yao, Pseudomonotone variational inequalities and fixed points, Fixed Point Theory, 22 (2021), 543–558. https://doi.org/10.24193/fpt-ro.2021.2.36 doi: 10.24193/fpt-ro.2021.2.36
    [16] L. C. Ceng, A. Petrusel, J. C. Yao, Y. Yao, Systems of variational inequalities with hierarchical variational inequality constraints for Lipschitzian pseudocontractions, Fixed Point Theory, 20 (2019), 113–134. https://doi.org/10.24193/fpt-ro.2019.1.07 doi: 10.24193/fpt-ro.2019.1.07
    [17] D. V. Thong, N. T. Vinh, Y. J. Cho, Accelerated subgradient extragradient methods for variational inequality problems, J. Sci. Comput., 80 (2019), 1438–1462. https://doi.org/10.1007/s10915-019-00984-5 doi: 10.1007/s10915-019-00984-5
    [18] D. V. Thong, D. V. Hieu, Modified Tseng's extragradient algorithms for variational inequality problems, J. Fixed Point Theory Appl., 20 (2018), 1438–1462. https://doi.org/10.1007/s11784-018-0634-2 doi: 10.1007/s11784-018-0634-2
    [19] Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148 (2011), 318–335. https://doi.org/10.1007/s10957-010-9757-3 doi: 10.1007/s10957-010-9757-3
    [20] Y. Zhou, On the Supply Chain Coordination with Fashion Goods, Ph.D thesis, Hunan University in Hunan, 2006.
    [21] Q. J. Li, L. Zhou, Y. Zhou, L. J. He, A Supply Chain Network Equilibrium Model with a Smoothingnewton Solution Scheme, Enterp. Inf. Syst., 13 (2019), 170–195. https://doi.org/10.1080/17517575.2018.1539773 doi: 10.1080/17517575.2018.1539773
    [22] J. Moosavi, A. M. Fathollahi-Fard, M. A. Dulebenets, Supply chain disruption during the COVID-19 pandemic: Recognizing potential disruption management strategies, J. Disaster Risk Reduct., 75 (2022), 102983. https://doi.org/10.1016/j.ijdrr.2022.102983 doi: 10.1016/j.ijdrr.2022.102983
    [23] H. Soleimani, P. Chhetri, A. M. Fathollahi-Fard, S. M. J. M. Al-e-Hashem, S. Shahparvari, Sustainable closed-loop supply chain with energy efficiency: Lagrangian relaxation, reformulations and heuristics, Ann. Oper. Res., 318 (2022), 531–556. https://doi.org/10.1007/s10479-022-04661-z doi: 10.1007/s10479-022-04661-z
    [24] M. Fattahi, K. Govindan, Data-driven rolling horizon approach for dynamic design of supply chain distribution networks under disruption and demand uncertainty, Decis. Sci., 53 (2020). https://doi.org/10.1111/deci.12481 doi: 10.1111/deci.12481
    [25] M. Asghari, H. Afshari, S. M. J. M. Al-e-hashem, A. M. Fathollahi-Fard, M. A. Dulebenets, Pricing and advertising decisions in a direct-sales closed-loop supply chain, Comput. Ind. Eng., 171 (2022), 108439. https://doi.org/10.1016/j.cie.2022.108439 doi: 10.1016/j.cie.2022.108439
    [26] A. Nagurney, D. Besik, L. S. Nagurney, Global supply chain networks and tariff rate quotas: Equilibrium analysis with application to agricultural products, J. Glob. Optim., 75 (2019), 439–460. https://doi.org/10.1007/s10898-019-00794-x doi: 10.1007/s10898-019-00794-x
    [27] Q. L. Dong, L. L. Liu, A. Gibali, A dynamic simultaneous algorithm for solving split equality fixed point problems, Optimization, (2022). https://doi.org/10.1080/02331934.2022.2124113 doi: 10.1080/02331934.2022.2124113
    [28] A. Cegielski, Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in Mathematics, Springer, Berlin, 2013. https://doi.org/10.1007/978-3-642-30901-4
    [29] Z. Shan, On Extragradient Algorithms for Variational Inequalities and Related Problems, M.S. thesis, North Minzu University in Ningxia, 2022.
    [30] S. Migórski, C. J. Fang, S. D. Zeng, A new modified subgradient extragradient method for solving variational inequalities, Appl. Anal., 100 (2021), 135–144. https://doi.org/10.1080/00036811.2019.1594202 doi: 10.1080/00036811.2019.1594202
    [31] H. T. Zhao, C. S. Zhang, An online-learning-based evolutionary many-objective algorithm, Inf. Sci., 509 (2020), 1–21. https://doi.org/10.1016/j.ins.2019.08.069 doi: 10.1016/j.ins.2019.08.069
    [32] M. A. Dulebenets, An Adaptive Polyploid Memetic Algorithm for scheduling trucks at a cross-docking terminal, Inf. Sci., 565 (2021), 390–421. https://doi.org/10.1016/j.ins.2021.02.039 doi: 10.1016/j.ins.2021.02.039
    [33] M. Kavoosi, M. A. Dulebenets, O. Abioye, J. Pasha, O. Theophilus, H. Wang, et al., Berth scheduling at marine container terminals: A universal island-based metaheuristic approach, Marit. Bus. Rev., 5 (2020), 30–66. https://doi.org/10.1108/MABR-08-2019-0032 doi: 10.1108/MABR-08-2019-0032
    [34] J. Pasha, A. L. Nwodu, M. A. Dulebenets, G. Tian, Z. Li, H. Wang, et al., Exact and metaheuristic algorithms for the vehicle routing problem with a factory-in-a-box in multi-objective settings, Adv. Eng. Inf., 52 (2022), 101623. https://doi.org/10.1016/j.aei.2022.101623 doi: 10.1016/j.aei.2022.101623
    [35] M. Kavoosia, M. A. Dulebenets, O. F. Abioye, J. Pasha, H. Wang, H. Chi, et al., An augmented self-adaptive parameter control in evolutionary computation: A case study for the berth scheduling problem, Adv. Eng. Inf., 42 (2022), 100972. https://doi.org/10.1016/j.aei.2019.100972 doi: 10.1016/j.aei.2019.100972
    [36] M. Rabbani, N. Oladzad-Abbasabady, N. Akbarian-Saravi, Ambulance routing in disaster response considering variable patient condition: NSGA-Ⅱ and MOPSO algorithms, J. Ind. Manage. Optim., 18 (2022), 1035–1062. https://doi.org/10.3934/jimo.2021007 doi: 10.3934/jimo.2021007
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1519) PDF downloads(79) Cited by(2)

Article outline

Figures and Tables

Figures(1)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog