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Abstract: To solve the equilibrium problem of the supply chain network, a new subgradient
extragradient method is introduced. The proposal achieves adaptive parameter selection, and supports a
one-step subgradient projection operator, which can theoretically reduce the computational complexity
of the algorithm. The introduction of subgradient projection operators makes the calculation of
algorithms easier, and transforms the projection difficulty problem into how to find suitable sub-
differential function problems. The given convergence proof further shows the advantages of the
proposed algorithm. Finally, the presented algorithm is operated to a concrete supply chain network
model. The comparisons show the proposed algorithm is better than other methods in term of CPU
running time and iteration steps.
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1. Introduction

The main work of this paper is to construct a new iterative algorithm to solve the supply chain
network equilibrium problem. In fact, we first transform the model into a variational inequality
model [1], and then solve it with an algorithm. At present, there are many iterative algorithms for
solving variational inequalities, but these algorithms rely on projection operators. The disadvantage of
projection operators is that the calculation complexity is high, and the calculation difficulty is large.
Therefore, it is the work of this paper to find an operation to replace the traditional projection operator
to make the algorithm easy to calculate, and to reduce the computational complexity of the algorithm.

The concept of supply chain originated in the book Competitive Advantage in the last century [2],
issued to Porter. Subsequently, the system of the supply chain was gradually established by scholars.
Among them, Ma et al. [3] defined the supply chain as follows: The supply chain is around the core
enterprise through the control of information flow, logistics and capital flow from the purchase of raw
materials to make intermediate products and final products, and finally by the sales network to deliver
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the products to consumers, suppliers, manufacturers, distributors, retailers and end users into a whole
functional network structure model.

Supply chain management no longer only focuses on the optimization of the enterprise’s own
system, but extends the scope of management to suppliers and users, and emphasizes information
sharing, integrated management and overall system optimization between multiple
enterprises. Therefore, supply chain management can be considered as a modern management
technology and management mode that integrates, plans, controls and coordinates the logistics,
capital flow and information flow that occur in the entire network chain structure from the supplier’s
supplier to the customer [4].

According to relevant research [5], if enterprises want to gain an advantage in the competition, one
of the most effective strategic means is to obtain a cost advantage, that is, a leading position in total
costs. Therefore, in order to achieve a leading position in the total cost, it is necessary for the enterprise
to reduce the price to the level below the same product through its own technical advantages, if the
enterprise can maintain this advantage in the overall leading position. In the same industry, it will also
achieve higher economic benefits than the same industry. Among them, supply chain management
further integrates the industrial chain, eliminates a series of duplicate cost expenditures and effectively
reduces cost consumption links, thereby reducing the total cost. The implementation of supply chain
management can reduce the total cost of enterprises by 10%, increase the on-time delivery rate by 15%,
shorten the production cycle by 25–35%, increase productivity by more than 10%, and improve asset
operation performance by 15–20%. Many successful companies, such as Dell and some overseas
multinational companies, have reduced their costs through supply chain management and increased
their total profits. Therefore, the establishment and solution of supply chain management model is
urgently needed in today’s society.

Daniele and Maugeri [6] list multiple equilibrium models for supply chain management, establishes
a optimization model and transforms it into a variational inequality problem for solving. The definition
of the problem, or VIP for short, refers to finding a point u in a non-empty closed convex set S, such
that ⟨T u, v − u⟩ ≥ 0,∀v ∈ S. Here, ⟨·, ·⟩ represents the inner product, and T is an operator defined on
the set S. The VIP for supply chain management is commonly used by the one-step gradient projection
method [7], that is

ui+1 = ΠS(ui − ςT ui). (1)

Here ς ∈R (0,L−1) is the parameter of the gradient projection, L denotes the Lipschitz constant of T ,
and ΠS : H → S is the projection operator, where H is a real Hilbert space. Since the supply chain
management model was transformed into a variational inequality model, people began to apply it to
solve the supply chain management model. Solving the required operator T is quasi-strong monotonic,
which is more difficult. In actual management, supply chain models often fail to meet this requirement.
In 2000, Tseng gave a class of extragradient methods [8]. Its specific form is as follows:yi = ΠS(ui − ςT ui),

ui+1 = yi − ς(T yi − T ui).
(2)

The algorithm requires a monotonic operator, which is relatively easy in actual supply chain
management. The Tseng algorithm is a major leap forward in the construction of iterative methods for
solving variational inequality model in human history, and it is also one of the most successful
iterative algorithms; even today’s iterative algorithms have the format of Tseng’s algorithm.
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At present, Censor et al. [9], Censor and Levy [10] and Cegielski and Censor [11] provide some
exterior gradient iterative methods for solving variational inequality problems. An et al. [12] gave a
new optimization iteration algorithm. Ceng and Yao [13], Ceng and Fong [14] and Ceng et al. [15, 16]
constructed implicit iterative algorithms to solve variational inequality problems. Recently,
Thong et al. [17] and Thong and Hieu [18] introduced an inertial term based on the Tseng method in
the following form: 

zi = ui + ϑi(ui − ui−1),
yi = ΠS(zi − ςT zi),
ui+1 = yi − ς(T yi − T zi).

(3)

Here, {ϑi} is a non-increasing sequence, ϑi ∈ (0, 1), i = 1, 2, . . ., and the form of zi is the inertial term.
The insertion of the inertia term makes the algorithm superior to the original Tseng algorithm in terms
of convergence speed. However, the projection operator itself is difficult to calculate. In addition,
the parameter of the algorithm is constant, if the constant parameter can be modified to the adaptive
parameter, which is undoubtedly a further improvement of the algorithm iteration speed.

In order to overcome the difficulty of projection operator calculation, construct adaptive parameter
to increase the iterative efficiency of the iterative algorithm and apply the variational inequality iterative
algorithm to solve the equilibrium problem, we modify the constant parameters in the Thong method.
In addition, the format of the Thong method is improved, that is, a subdifferentiable convex functional
ϕ(u) is found to replace the non-empty closed convex S (Censor first proposed this idea in [19]), and
the gradient projection format is modified to the subgradient projection format, thereby reducing the
difficulty of projection calculation to a certain extent. Finally, this paper gives a specific example of
the supply chain management, and uses our method, the Tseng method and Thong method to solve the
example. Numerical analysis shows the algorithm in this article performs better than those available.

The rest of this paper is organized as follows: We introduce the supply chain network equilibrium
model proposed by Zhou [20] and Li et al. [21], and transform the model into a variational inequality
problem in order to facilitate the use of the iterative method in this paper to solve it in Section 2.
Section 3 presents some important concepts and lemma to prove algorithmic convergence. In Section 4,
the new Tseng subgradient extragradient projection iterative algorithm constructed in this paper, and
the convergence proof of the algorithm are given. In Section 5, we give a specific example of the
equilibrium model of the supply chain network based on the actual situation, and solve it by using
the algorithm of this paper, the Tseng method and the Thong method. The calculation results and the
performance data of the three algorithms are presented at the end of the section. Finally, a summary of
the work in this article is given in Section 6.

2. Supply chain network equilibrium model

This section mainly introduces the equilibrium model of supply chain networks in [21], and the
process of transforming this model into variational inequality problems. In fact, there is much more
research on supply chain management. For example, Moosavi et al.gave recognizing potential
disruption management strategies in the COVID-19 pandemic in [22]. This paper considers
systematic literature survey studies that aim to identify promising supply chains disruption
management strategies through bibliometric, network and thematic analyses. Soon after,
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Soleimani et al. [23] discussed the design of a sustainable closed-loop supply chain, including
suppliers, considering energy consumption. In addition, distribution centers also act as warehouses
and collection centers. The issues involved remanufacturing, recycling and disposing of returned
items. Goals include total profits, energy consumption and the number of jobs created. Fattahi and
Govindan [24] address the dynamic design of supply chain networks, in which the moments of
demand distribution function are uncertain and facilities’ availability is stochastic because of possible
disruptions, and proposes a data-driven rolling horizontal method that utilizes the observation of
random parameters in stochastic optimization problems. Asghari et al. [25] has developed a new
optimization model based on pricing and advertising decisions in the closed-loop supply chain of
direct sales, and improved the standard particle swarm optimization algorithm using swarm learning
theory. In the context of carbon emissions, the Nagurney et al. [26] study considers the
decision-making research of the closed-loop supply chain with third-party recycling, and government
rewards and punishments, which has certain reference value for enterprise competition
decision-making and government policy formulation.

2.1. Manufacturer’s profit model

Suppose m manufacturers can produce t products, as well as n distributors and o demand markets
in the model. For convenience, we use i, j, k, l to indicate manufacturers, distributors, demand markets
and products. The behavioral analysis of manufacturers and their profit model are as follows:

max
n∑

j=1

t∑
l=1

p1i jlQ1i jl −

t∑
l=1

fil(Q1) −
n∑

j=1

t∑
l=1

c1i jl(Q1i jl) s.t. Q1i jl ≥ 0,∀ j, l. (4)

Here, p1i jl represents price of the lth product offered by the ith manufacturer to the jth distributor.
Q1i jl ∈ Rmnt

+ represents the quantity of the lth product supplied by the ith manufacturer to the jth
distributor, which is the constituent vector Q1. fil(Q1) represents the manufacturer’s cost function.
c1i jl(Q1i jl) represents the shipping cost required to ship Q1i jl lth product from the ith manufacturer to
the jth distributor.

2.2. Distributor’s profit model

Suppose Q2 jkl represents the number of products offered by the jth distributor to the kth demand
market, c2il(Q1) represents the cost of the distributor, p2 jkl represents the selling price of the lth product
offered in the kth market. The profit model is as follows:

max
o∑

k=1

t∑
l=1

p2 jklQ2 jkl −

t∑
l=1

c2 jl(Q1) −
m∑

i=1

t∑
l=1

p1i jlQ1i jl

s.t.
m∑

i=1

Q1i jl ≥

o∑
k=1

Q2 jkl,Q1i jl ≥ 0,Q2 jkl ≥ 0,∀i, k, l.

(5)

2.3. Demand-market equilibrium model

Suppose c3 jkl is the cost incurred during transportation, p3kl represents the unit selling price of the
lth product in the kth demand market, and d3kl represents the corresponding demand. The equilibrium
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model is as follows:

p2 jkl + c3 jkl(Q2)

 ≥ p3kl, as Q2 jkl = 0,
= p3kl, as Q2 jkl ≥ 0.

(6)

d3 jkl(p3l)


≤

n∑
j=1

Q2 jkl, as p3kl = 0,

=

n∑
j=1

Q2 jkl, as p3kl ≥ 0.

(7)

Now, we transform the equilibrium model of supply chain networks into a variational inequality
model. First, we give the Lemma 1.

Lemma 1 ([20], Lemma 1.3.1). Let F be continuous and differentiable, the set S non-empty closed
convex. Then, u is the solution to the optimization problem F (u) = maxv∈S F (v) if and only if u is also
the solution of the variational inequality problem, that is, u ∈ VI(S,∇F ). Here, VI(S,∇F ) denotes
the solution set of the variational inequality problem.

According to Lemma 1 and the equilibrium model of the supply chain network, we can also obtain
the corresponding variational inequality model, which is Theorem 2.

Theorem 2 ([20], Theorem 6.2.1). Solving the Dr. Zhou’s supply chain network equilibrium model
in this section is equivalent to solving the variational inequality problem, that is, finding the u ∈ S =
Rmnt+not+nt+ot
+ , such that ⟨T u, v − u⟩ ≥ 0, ∀v ∈ S. Here,

T v =



m∑
i=1

n∑
j=1

t∑
l=1

(
∂ fil(Q1)
∂Q1i jl

+
∂c1i jl(Q1i jl)
∂Q1i jl

+
∂c2 jl(Q1)
∂Q1i jl

− ρ jl

)
n∑

j=1

o∑
k=1

t∑
l=1

(
c3 jkl(Q2) + ρ jl − p3 jkl

)
n∑

j=1

t∑
l=1

(
m∑

i=1
Q1i jl −

o∑
k=1
Q2 jkl

)
o∑

k=1

t∑
l=1

(
n∑

j=1
Q2 jkl − dkl(p3kl)

)


, v =


Q1i jl

Q2 jkl

ρ jl

p3kl

 . (8)

The ρ jl is a Lagrange multiplier of the profit model of distributors in the second part of the network
equilibrium problem, and its meaning is equivalent to the price at which distributor j sells the product
l in equilibrium.

3. Preliminaries

The section gives some definitions and lemmas, which will be used in Section 4. Let ∥ · ∥ be norm
inH , then we have

∥ku + (1 − k)v∥2 = k∥u∥2 + (1 − k)∥v∥2 − k(1 − k)∥u − v∥2 (9)

and
∥u + v∥2 ≤ ∥u∥2 + 2⟨v, u + v⟩,∀u, v ∈ H , k ∈ R (10)

in [17].
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Definition 3 ([27], Definition 2.1). Let T : H → H be an operator.

• T is said to be L-Lipschitz continuous with L > 0 if

∥T u − T v∥ ≤ L∥u − v∥,∀u, v ∈ H . (11)

If L < 1, then T is contractive. If L = 1, then T is nonexpansive.
• T is said to be monotone if

⟨T u − T v, u − v⟩ ≥ 0,∀u, v ∈ H . (12)

In addition, the definition of the quasi-strong monotonic operator T is as follows.

⟨T u − T v, u − v⟩ ≥ γ∥T u − T v∥2, γ > 0,∀u, v ∈ H . (13)

Lemma 4 ([28], Theorem 1.2.4). Let S be a nonempty closed convex subset of a real Hilbert space
H , and let ΠS be a projection operator from H to S. Given u ∈ H and z ∈ S, then z = ΠSu ⇔
⟨u − z, z − v⟩ ≥ 0, ∀v ∈ S, and ΠS(u) = arg minc∈S ∥u − c∥.

Lemma 5 ([29], Lemma 2.2, Opial’s Theorem). Let ∅ , S ⊂ H and {ui} be the sequence in H such
that

• ∀u ∈ S, limi→∞ ∥ui − u∥ exist.
• Every point of weakly gathering in the sequence {ui} is in S.

Then, ui weakly converges to a point u in S.

Lemma 6 ([30], Lemma 1.2). Let {ai} and {ςi} be nonnegative real sequences with ςi ∈ (0, 1) and∑∞
i=0ςi = ∞. If there exist a sequence {bi} with lim supi→∞ bi < 0, and 0 < M ∈ N, such that ai+1 ≤

(1 − ςi)ai + ςibi for all i ≥ M, then limi→∞ ai = 0.

4. New Tseng subgradient extragradient iterative method

Let T be a non-expansion operator and ΠSi be a subgradient projection operator.
S := {u ∈ H|ϕ(u) ≤ 0} and Si :=

{
a ∈ H|ϕ(ui) + ⟨gϕi(ui), a − ui⟩ ≤ 0

}
, gϕi ∈ ∂ϕ(ui). Here,

∂ϕ(u) :=
{
gϕi ∈ H|ϕ(v) ≥ ϕ(u) + ⟨gϕi , v − u⟩,∀v ∈ H

}
.

First, we introduce the following algorithm.

Algorithm 7. Let {ϑi}i≥0 be a non-increasing positive sequence, ς0 ∈R (0, 1).

Step 1. For given {ui}, compute the sequence {zi} by

zi = ui + ϑi(ui − ui−1).

Step 2. Compute
yi = ΠSi(zi − ςiT zi).

If zi = yi, then zi or yi is the solution to the supply chain network equilibrium model. Otherwise,
go to Step 3.
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Step 3. Calculate
ui+1 = yi − ςi(T yi − T zi).

Step 4. Set i := i + 1 and return to Step 1.

Here,

ςi+1 =

 min
{
µ∥yi − zi∥

∥T yi − T zi∥
, ςi

}
, as T yi − T zi , 0,

ςi, as T yi − T zi = 0,
µ ∈R (0, 1).

Lemma 8. Let {ςi} be a sequence obtained by Algorithm 7, then the sequence {ςi} is non-increasing
and its lower bound is min

{
µL−1, ς0

}
.

Proof. According to the definition of {ςi} and operator T , we have that

µ∥yi − zi∥

∥T yi − T zi∥
≥
µ∥yi − zi∥

L∥yi − zi∥
=
µ

L
.

In addition, we know that {ςi} is non-increasing by the definition. So, lower bound of the sequence {ςi}

is min
{
µL−1, ς0

}
. □

Theorem 9. Let {ui} be the sequence run by Algorithm 7, then ∀p ∈ VI(S,T ) has

∥ui+1 − p∥2 ≤ ∥zi − p∥2 −
(
1 −
ςi

2µ2

ς2
i+1

)
∥yi − zi∥

2. (14)

Proof. By the definition of the sequence {ui},

∥ui+1 − p∥2 = ∥yi − ςi(T yi − T zi) − p∥2

= ∥yi − p∥2 + ςi
2∥T yi − T zi∥

2
− 2ςi⟨yi − p,T yi − T zi⟩

= ∥zi − p∥2 + ∥zi − yi∥
2 + 2⟨yi − p,T yi − T zi⟩

+ ςi
2∥T yi − T zi∥

2
− 2ςi⟨yi − p,T yi − T zi⟩

= ∥zi − p∥2 + ∥zi − yi∥
2
− 2⟨yi − zi, yi − zi⟩

+ 2⟨yi − zi, yi − p⟩ + ςi
2∥T yi − T zi∥

2

− 2ςi⟨yi − p,T yi − T zi⟩

= ∥zi − p∥2 − ∥zi − yi∥
2 + 2⟨yi − zi, yi − p⟩

+ ςi
2∥T yi − T zi∥

2
− 2ςi⟨yi − p,T yi − T zi⟩,

(15)

and
⟨yi − zi + ςiT zi, yi − p⟩ ≤ 0,

which is from the construction of yi. Further,

⟨yi − zi, yi − p⟩ ≤ −ςi⟨T zi, yi − p⟩. (16)
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Considering (15) and (16), one can obtain

∥ui+1 − p∥2 ≤ ∥zi − p∥2 − ∥zi − yi∥
2
− 2ςi⟨T zi, yi − p⟩

+ ςi
2∥T yi − T zi∥

2
− 2ςi⟨yi − p,T yi − T zi⟩

= ∥zi − p∥2 − ∥zi − yi∥
2 + ςi

2∥T yi − T zi∥
2
− 2ςi⟨yi − p,T yi⟩

≤ ∥zi − p∥2 − ∥zi − yi∥
2 +
µ2ς2

i

ς2
i+1

∥yi − zi∥
2

− 2ςi⟨yi − p,T yi − T p⟩ − 2ςi⟨yi − p,T p⟩

≤ ∥zi − p∥2 −
(
1 −
µ2ς2

i

ς2
i+1

)
∥yi − zi∥

2.

□

Theorem 10. Let {ui}, {yi} and {zi} be the sequences run by Algorithm 7. If {ϑi} is a non-incrementing
sequence, 0 ≤ ϑi ≤ ϑ and

ϑ < min
{ √

1 + 8Ki − 1 − 2Ki

2(1 − Ki)
, 1

}
,Ki :=

1 − µ
2ς2

i
ςi+12(

1 + µςi
ςi+1

)2 , (17)

then {ui}, {yi}, {zi}, and {∥ui − p∥} are all bounded sequences, where p ∈ VI(C,T ).

Proof. The definition of the sequence {ui} implies that

∥ui+1 − yi∥ = ∥yi − ςi(T yi − T zi) − yi∥ ≤ ςi∥T yi − T zi∥ ≤
µςi

ςi+1
∥yi − zi∥,

so, we get

∥ui+1 − zi∥ ≤ ∥xi+1 − yi∥ + ∥yi − zi∥ ≤

(
1 +
µςi

ςi+1

)
∥yi − zi∥. (18)

By Theorem 9, we derive

∥ui+1 − p∥2 ≤ ∥zi − p∥2 −
(
1 −
µ2ς2

i

ςi+1
2

)
∥yi − zi∥

2. (19)

Further, we have

∥ui+1 − p∥2 ≤ ∥zi − p∥2 −
1 − µ

2ς2
i

ςi+12(
1 + µςi

ςi+1

)2 ∥ui+1 − zi∥
2

= ∥zi − p∥2 − Ki∥ui+1 − zi∥
2,

(20)

and
∥zi − p∥2 = ∥ui + ϑi(ui − ui−1) − p∥2

= ∥(1 + ϑi)(ui − p) − ϑi(ui−1 − p)∥2

≤ (1 + ϑi)∥ui − p∥2 − ϑi∥ui−1 − p∥2 + ϑi(1 + ϑi)∥ui − ui−1∥
2,

(21)
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which is known from the construction of {zi}. In addition, considering (20) and (21), we deduce

∥ui+1 − p∥2 ≤ (1 + ϑi)∥ui − p∥2 − ϑi∥ui−1 − p∥2 + ϑi(1 + ϑi)∥ui − ui−1∥
2

≤ (1 + ϑi)∥ui − p∥2 − ϑi∥ui−1 − p∥2 + 2ϑ∥ui − ui−1∥
2,

(22)

where, ϑi(1 + ϑi) ≤ 2ϑ is caused by the theorem condition 0 ≤ ϑi ≤ ϑ ≤ 1 and

ϑi ≤ ϑ, ϑ
2
i ≤ ϑ

2 ≤ ϑ.

On the other hand, we get

∥ui+1 − zi∥
2 = ∥ui+1 − ui − ϑi(ui − ui−1)∥2

= ∥ui+1 − ui∥
2 + ϑi

2
∥ui − ui−1∥

2
− 2ϑi⟨ui+1 − ui, ui − un−1⟩

≥ ∥ui+1 − ui∥
2 + ϑi

2
∥ui − ui−1∥

2
− 2ϑi∥ui+1 − ui∥ · ∥ui − ui−1∥

≥ (1 − ϑi)∥ui+1 − ui∥
2 + (ϑi

2
− ϑi)∥ui − ui−1∥

2.

(23)

Substituting (21) and (23) into (20), we know that

∥ui+1 − p∥2 ≤ (1 + ϑi)∥ui − p∥2 − ϑi∥ui−1 − p∥2 + ϑi(1 + ϑi)∥ui − ui−1∥
2

− Ki(1 − ϑi)∥ui+1 − ui∥
2
− Ki(ϑi

2
− ϑi)∥ui − ui−1∥

2

= (1 + ϑi)∥ui − p∥2 − ϑi∥ui−1 − p∥2 − Ki(1 − ϑi)∥ui+1 − ui∥
2

+ [ϑi(1 + ϑi) − Ki(ϑi
2
− ϑi)]∥ui − ui−1∥

2

= (1 + ϑi)∥ui − p∥2 − ϑi∥ui−1 − p∥2 − γi∥ui+1 − ui∥
2 + µi∥ui − ui−1∥

2.

(24)

Here, γi := Ki(1 − ϑi) and µi := ϑi(1 + ϑi) − Ki(ϑi
2
− ϑi) ≥ 0. Let Φi := ∥ui − p∥2 − ϑi∥ui−1 − p∥2 +

µi∥ui − ui−1∥
2. We obtain

Φi+1 − Φi = ∥ui+1 − p∥2 − (1 + ϑi+1)∥ui − p∥2 + ϑi∥ui−1 − p∥2

+ µi+1∥ui+1 − ui∥
2
− µi∥ui − ui−1∥

2

≤ −(γi − µi+1)∥ui+1 − ui∥
2.

(25)

Because of 0 ≤ ϑi ≤ ϑi+1 ≤ ϑ, we derive

γi − µi+1 = Ki(1 − ϑi) − ϑi+1(1 + ϑi+1) + Ki(ϑi+1
2
− ϑi+1)

≥ Ki(1 − ϑi+1) − ϑi+1(1 + ϑi+1) + Ki(ϑ2
i+1 − ϑi+1)

≥ Ki(1 − ϑ) − ϑ(1 + ϑ) + Ki(ϑ2 − ϑ)
≥ −(1 − Ki)ϑ2 − (1 + 2Ki)ϑ + Ki.

(26)

Additionally,

ϑ < min
{ √

1 + 8Ki − 1 − 2Ki

2(1 − Ki)
, 1

}
≤

√
1 + 8Ki − 1 − 2Ki

2(1 − Ki)
,

so, −(1 − Ki)ϑ2 − (1 + 2Ki)ϑ + Ki ≥ 0. According to (25) and (26),

Φi+1 − Φi ≤ −
[
−(1 − Ki)ϑ2 − (1 + 2Ki)ϑ + Ki

]
∥ui+1 − ui∥

2
≤ 0. (27)
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Therefore, the sequence {Φi} is non-incremental. Also, due to µi ≥ 0,

Φi = ∥ui − p∥2 − ϑi∥ui−1 − p∥2 + µi∥ui − ui−1∥
2

≥ ∥ui − p∥2 − ϑi∥ui−1 − p∥2,
(28)

or
∥ui − p∥2 ≤ ϑi∥ui−1 − p∥2 + Φi

≤ ϑ∥ui−1 − p∥2 + Φ1

≤ · · · ≤ ϑi∥u0 − p∥2 + Φ1(1 + . . . + ϑi−1)

≤ ϑi∥u0 − p∥2 +
Φ1

1 − ϑ
.

(29)

Similarly,
Φi+1 = ∥ui+1 − p∥2 − ϑi+1∥ui − p∥2 + µi+1∥ui+1 − ui∥

2

≥ ∥ui+1 − p∥2 − ϑi+1∥ui − p∥2

≥ −ϑi+1∥ui − p∥2.

(30)

By (28), (29) and (30), the following holds:

−Φi+1 ≤ ϑi+1∥ui − p∥2 ≤ ϑ∥ui − p∥2 ≤ ϑi+1∥u0 − p∥2 +
ϑΦ1

1 − ϑ
≤ ∥u0 − p∥2 +

ϑΦ1

1 − ϑ
.

Combine the above equation and rewrite Eq (29), we get

[
−(1 − Ki)ϑ2 − (1 + 2Ki)ϑ + Ki

] k∑
i=1

∥ui+1 − ui∥
2
≤ Φ1 − Φk+1

≤ ϑk+1∥u0 − p∥2 +
ϑΦ1

1 − ϑ
+ Φ1

≤ ∥u0 − p∥2 +
ϑΦ1

1 − ϑ
+ Φ1

= ∥u0 − p∥2 +
Φ1

1 − ϑ
.

This means
∑∞

i=1 ∥ui+1 − ui∥
2 < ∞. So, we have ∥ui+1 − ui∥ → 0, as i→ ∞, and

lim
i→∞
∥ui+1 − zi∥

2 = lim
i→∞

(
∥ui+1 − ui∥

2 + ϑi
2
∥ui − ui−1∥

2
− 2ϑi⟨ui+1 − ui, ui − ui−1⟩

)
= 0. (31)

In addition, from Eq (19),

lim
i→∞
∥yi − zi∥

2 = lim
i→∞

(
1 −
µ2ς2

i

ς2
i+1

)−1 (
∥zi − p∥2 − ∥ui+1 − p∥2

)
= 0. (32)

It is easy to obtain by (31) and (32) that

lim
i→∞

ui = lim
i→∞

zi = lim
i→∞

yi. (33)

Further, {ui}, {yi}, and {zi} are all bounded sequences, so the sequence {∥ui − p∥} is also bounded. □
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Theorem 11. Let {ui} be the sequence run by Algorithm 7. If {ϑi} is a non-incrementing sequence,
0 ≤ ϑi ≤ ϑ and

ϑ < min
{ √

1 + 8Ki − 1 − 2Ki

2(1 − Ki)
, 1

}
,Ki :=

1 − µ
2ς2

i
ςi+12(

1 + µςi
ςi+1

)2 ,

then {ui} weakly converges to z ∈ VI(S,T ).

Proof. In fact, since the sequence {ui} is bounded, suppose there is a sub-sequence of {ui}, as i → ∞,
so that the sub-sequence weakly converges to a point z ∈ H . Without losing its generality, this article
still uses {ui} to represent this sub-sequence, i.e., ui ↪→ z , where ”↪→” denotes weak convergence.

Since limi→∞ ui = limi→∞ zi = limi→∞ yi by Theorem 10, there are sub-sequences of {zi} and {yi} that
converge weakly to z. Similarly, {zi} and {yi} are still used to represent their sub-sequences, i.e., zi ↪→ z
and yi ↪→ z. Since T is a monotonic operator and yi = ΠSi(zi − ςiT zi), ∀a ∈ S, then there is

0 ≤ ⟨yi − zi + ςiT zi, a − yi⟩

= ⟨yi − zi, a − yi⟩ + ςi⟨T zi, a − yi⟩

= ⟨yi − zi, a − yi⟩ + ςi⟨T zi, a − zi⟩ + ςi⟨T zi, zi − yi⟩.

Let i→ ∞, then ∀a ∈ S, so there is
ς∞⟨T z, a − z⟩ ≥ 0.

Because of ς∞ ≥ min
{
µL−1, ς0

}
> 0 by the Lemma 8, we have

⟨T z, a − z⟩ ≥ 0,∀a ∈ S.

Therefore, there is z ∈ VI(S,T ). Thus the Opial’s Theorem (Lemma 5) derivable theorem holds. □

Corollary 12. Let {ui} be the sequence run by Algorithm 7. If {ϑi} is a non-incrementing sequence,
0 ≤ ϑi ≤ ϑ and

ϑ < min
{ √

1 + 8Ki − 1 − 2Ki

2(1 − Ki)
, 1

}
,Ki :=

1 − µ
2ς2

i
ςi+12(

1 + µςi
ςi+1

)2 ,

then, {ui} weakly converges to the solution of Dr. Zhou’s supply chain network equilibrium model. That
is, {ui} weakly converges to z ∈ VI(S = Rmnt+not+nt+ot

+ ,A), and

Ax =



m∑
i=1

n∑
j=1

t∑
l=1

(
∂ fil(Q1)
∂Q1i jl

+
∂c1i jl(Q1i jl)
∂Q1i jl

+
∂c2 jl(Q1)
∂Q1i jl

− ρ jl

)
n∑

j=1

o∑
k=1

t∑
l=1

(
c3 jkl(Q2) + ρ jl − p3 jkl

)
n∑

j=1

t∑
l=1

(
m∑

i=1
Q1i jl −

o∑
k=1
Q2 jkl

)
o∑

k=1

t∑
l=1

(
n∑

j=1
Q2 jkl − dkl(p3kl)

)


, x =


Q1i jl

Q2 jkl

ρ jl

p3kl

 ∈ H = Rmnt+not+nt+ot.
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5. Solve the supply chain network equilibrium model by the new Tseng method

In this section, we give a concrete example of the equilibrium model of the supply chain network
and solve it using our method in Section 4, the Thong method in [18], and Tseng method in [8].All the
projection over S are computed effectively by math, numpy and matplotlib.pyplot in Python 3.8. All
the programs are performed on Vostro Dell PC Desktop 11th Gen Intel(R) Core(TM) i5-11400 @ 2.60
GHz 2.59 GHz, RAM 8.00 GB.

Table 1. The notations.

fil(Q1) Manufacturer’s cost function.
Q1 The constituent vector of Q1i jl.
Q1i jl Quantity of the lth product supplied by the ith manufacturer to the jth distributor,
Q2 The constituent vector of Q2 jkl.
Q2 jkl The number of products offered by the jth distributor to the kth demand market.
c1i jl(Q1i jl) The shipping cost required to ship Q1i jl lth product from the ith

manufacturer to the jth distributor.
c2il(Q1) The cost of the distributor.
p3l o−dimensional vector composed of the unit selling.
p3kl The unit selling price of the lth product in the kth demand market

price of the lth product in all demand markets.
d3l The corresponding demand.

This example is from [20] (Example 6 in Chapter 6, Section 4). It takes into account the
competition in the model compared to other examples. There are 2 manufacturers, 2 distributors and 2
demand markets. In order to increase the competitiveness of the model, the manufacturer’s production
costs are not only related to the number of products they produce, but also to the production of
other manufacturers:

f11(Q1) = 0.5Q2
1111 +Q1111Q1121 +Q1111,

f12(Q1) = 0.5Q2
1112 +Q1112Q1122 +Q1112,

f21(Q1) = 0.5Q2
1121 +Q1111Q1121 +Q1121,

f22(Q1) = 0.5Q2
1122 +Q1112Q1122 +Q1122.

The manufacturer’s shipping cost function are as follows:

c1111(Q1111) = 0.05Q2
1111 + 2Q1111, c1112(Q1112) = 0.05Q2

1112 + 2Q1112,

c1121(Q1121) = 0.05Q2
1121 + 2Q1121, c1122(Q1122) = 0.05Q2

1122 + 2Q1122,

c1211(Q1211) = 0.05Q2
1211 + 2Q1211, c1212(Q1212) = 0.05Q2

1212 + 2Q1212,

c1221(Q1221) = 0.05Q2
1221 + 2Q1221, c1222(Q1222) = 0.05Q2

1222 + 2Q1222.
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The holding costs of distributors are as follows:

c211(Q1) = 0.005

 2∑
i

Q1i11

2

, c212(Q1) = 0.005

 2∑
i

Q1i12

2

,

c221(Q1) = 0.005

 2∑
i

Q1i21

2

, c222(Q1) = 0.005

 2∑
i

Q1i22

2

.

Distributors need to market transportation costs are as follows:

c3111(Q2) = 0.5Q2111 + 50, c3112(Q2) = 0.5Q2112 + 50,
c3121(Q2) = 0.5Q2121 + 50, c3122(Q2) = 0.5Q2122 + 50,
c3211(Q2) = 0.5Q2211 + 50, c3212(Q2) = 0.5Q2212 + 50,
c3221(Q2) = 0.5Q2221 + 50, c3222(Q2) = 0.5Q2222 + 50.

In the demand market, the demand for a product is not only affected by its own price, but also related
to the selling price in other demand markets:

d11(p31) = −2p311 + 1.5p321 + 1000,
d12(p32) = −2p312 + 1.5p322 + 1000,
d21(p31) = −2p321 + 1.5p311 + 1000,
d12(p32) = −2p322 + 1.5p321 + 1000.

Set real Hilbert space H := R2×2×2+2×2×2+2×2+2×2=24. The subdifferential function of this experiment is
ϕ(u) := d2

R24
+

(u), and S := {u ∈ H|ϕ(u) = d2
R24
+

(u) ≤ 0}, where d2
R24
+

(u) represents the distance function
from u to R24

+ . Given ς = µ = 0.03, ς0 = 0.06, ϑi = n−1, if ∥zi − yi∥ ≤ 10−6, then stop iteration.
Obviously, because the competition between the members of the model is considered, the balance

problem solved is more complex and closer to the real situation in the real world. The optimal results
obtained by our method, Thong method and Tseng method are as follows: The number of products
supplied by the manufacturer to the distributor is Q∗1 : Q∗1111 = Q

∗
1211 = Q

∗
1121 = Q

∗
1221 = 225.87,

Q∗1112 = Q
∗
1212 = Q

∗
1122 = Q

∗
1222 = 183.33. The number of products offered by distributors to demand

markets is Q∗2 : Q∗2111 = Q
∗
2211 = Q

∗
2121 = Q

∗
2221 = 225.87, Q∗2112 = Q

∗
2212 = Q

∗
2122 = Q

∗
2222 = 183.33.

The unit price of the product at the distributor is ρ∗11 = ρ
∗
21 = 933.58 and ρ∗12 = ρ

∗
22 = 1125.00. The unit

price of the product in the demand market is p∗311 = p∗321 = 1096.52 and p∗312 = p∗322 = 1266.67. The
data produced by the three algorithms is the same as in [20].

Table 2. Comparison of our method, Thong method, and Tseng method.

CPU time(in milliseconds) Iteration steps
Our method 80787 775
Thong method 99787 1447
Tseng method 96850 1480
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Figure 1. Time error plot of the three methods.

The data obtained by the three methods and [20] are consistent, and the correctness of the algorithm
is guaranteed. As can be seen from Figure 1, the iteration error of our algorithm lagged behind that
of the Thong algorithm and the Tseng algorithm at the beginning, as our algorithm has a tendency to
go beyond the Thong method and the Tseng method, as the iteration progressed. As we know from
Table 2, our method does go beyond the Thong method and the Tseng method. Moreover, both CPU
running time and iteration steps are better than the Thong method and the Tseng method.

This example contains two manufacturers, two distributors, and two demand markets. If it contains
more elements, the set S is more complex, the computational complexity of the projection operator
will be higher, and the advantages of the subgradient projection operator in this paper will be more
advantageous in theory.

6. Conclusions

We mainly study the Tseng extragradient projection iterative method for the solving supply chain
network equilibrium problem, and we study and draw on the research results of variational inequality
iterative algorithms in recent decades, especially the method constructed by Thong et al. In this paper,
the constant parameter ς in the Thong method is modified to the adaptive parameter ςi, a
sub-differentiable convex operator ϕ(u) is found instead of the non-empty closed convex S, the
gradient projection format is modified to the subgradient projection format, and the supply chain
management model is derived into a variational inequality problem.

However, how to choose the appropriate sub-differential functionals to construct subgradient
projection operators is also a research problem, and the sub-differential functional used in this paper is
ϕ(u) = d2

R24
+

(u). In fact, there is more than one suitable sub-differential functional. It can be seen from
the examples in this paper that the speed of our algorithm is better than that of the two algorithms of
the Thong method and the Tseng method, so it has certain practicality.

In this paper, the Algorithm 7 is constructed by considering the variational inequality problem itself.
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In fact, we can also try to solve the supply chain network equilibrium problem through algorithms in
other fields, such as online learning [31], scheduling [32, 33], multi-objective optimization [34] and
others [35, 36].
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