Accurate evaluation of motor energy efficiency under off-condition operation can provide an important basis for an energy-saving upgrade of the motor and the elimination of backward motors. By considering the power quality, motor characteristics and load characteristics, a motor energy efficiency evaluation system with seven indexes and 10 grades was constructed. An improved elephant herding optimization method combined with a support vector machine rating model is proposed, it achieved an accuracy higher than 98%. Considering the slow convergence speed and low convergence precision of the standard elephant herding optimization (EHO) method, it is easy to fall into the local optimum problem. To improve population initialization, chaotic mapping and adversarial learning were used to achieve EHO with population diversity and global search capability. Group learning and elite retention have been added to improve the local development ability of the algorithm. The improved EHO has been compared with other intelligent optimization algorithms by using 12 benchmark functions, and the results show that the improved algorithm has better optimization performance.
Citation: Xinrui Ren, Jianbo Yu, Zhaomin Lv. Support vector machine optimization via an improved elephant herding algorithm for motor energy efficiency rating[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 11957-11982. doi: 10.3934/mbe.2022557
Accurate evaluation of motor energy efficiency under off-condition operation can provide an important basis for an energy-saving upgrade of the motor and the elimination of backward motors. By considering the power quality, motor characteristics and load characteristics, a motor energy efficiency evaluation system with seven indexes and 10 grades was constructed. An improved elephant herding optimization method combined with a support vector machine rating model is proposed, it achieved an accuracy higher than 98%. Considering the slow convergence speed and low convergence precision of the standard elephant herding optimization (EHO) method, it is easy to fall into the local optimum problem. To improve population initialization, chaotic mapping and adversarial learning were used to achieve EHO with population diversity and global search capability. Group learning and elite retention have been added to improve the local development ability of the algorithm. The improved EHO has been compared with other intelligent optimization algorithms by using 12 benchmark functions, and the results show that the improved algorithm has better optimization performance.
[1] | X. Cui, Y. Luo, Y. Yang, Y. Guo, H. Wang, X. Liu, Energy saving mechanism and energy saving approach of asynchronous motor under periodic variable working conditions, Proc. Chin. J. Electr. Eng., 28 (2008), 90–97. |
[2] | D. Yang, H. R. Karimi, L. Gelman, A fuzzy fusion rotating machinery fault diagnosis framework based on the enhancement deep convolutional neural networks, Sensors, 22 (2022), 671. https://doi.org/10.3390/s22020671 doi: 10.3390/s22020671 |
[3] | Z. Lv, Online monitoring of batch processes combining subspace design of latent variables with support vector data description, Complex Eng. Syst., 1 (2021). https://org.doi/10.20517/ces.2021.02 doi: 10.20517/ces.2021.02 |
[4] | J. Yu, X. Yan, Data-feature-driven nonlinear process monitoring based on joint deep learning models with dual-scale, Inf. Sci., 591 (2022), 381–399. https://doi.org/10.1016/j.ins.2021.12.106 doi: 10.1016/j.ins.2021.12.106 |
[5] | J. Yu, X. Yan, Active features extracted by deep belief network for process monitoring, ISA Trans., 84 (2018), 247–261. https://doi.org/10.1016/j.isatra.2018.10.011 doi: 10.1016/j.isatra.2018.10.011 |
[6] | J. Yu, X. Yan, Multiscale intelligent fault detection system based on agglomerative hierarchical clustering using stacked denoising autoencoder with temporal information, Appl. Soft Comput., 95 (2020), 106525. https://doi.org/10.1016/j.asoc.2020.106525 doi: 10.1016/j.asoc.2020.106525 |
[7] | Y. Zhao, X. Li, S. Yang, Minimum allowable values of energy efficiency and energy efficiency grades for small and medium three-phase asynchronous motors 18613, 2012. |
[8] | C. Luo, W. B. Ma, J. Zhao, Evaluation and analysis of the influence factors on the energy consumption of the motor system, Motor Control Appl., 43 (2016), 98–103. |
[9] | C. Li, Research on energy saving evaluation index system of motor system, Motor Control Appl., 43 (2016), 74–77. |
[10] | L. X. Ma, M. Y. Lv, Research on intelligent quantification and classification method of power energy efficiency, Power Sci. Eng., 33 (2017), 46–49. |
[11] | J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, A. Lopez, A comprehensive survey on support vector machine classification: Applications, challenges and trends, Neurocomputing, 408 (2020), 189–215. https://doi.org/10.1016/j.neucom.2019.10.118 doi: 10.1016/j.neucom.2019.10.118 |
[12] | G. G. Wang, S. Deb, Z. Cui, Monarch butterfly optimizations, Neural Comput. Appl., 31 (2019), 1995–2014. https://doi.org/10.1007/s00521-015-1923-y doi: 10.1007/s00521-015-1923-y |
[13] | S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008 |
[14] | S. H. S. Moosavi, V. K. Bardsiri, Satin bowerbird optimizer: A new optimization algorithm to optimize ANFIS for software development effort estimation, Eng. Appl. Artif. Intell., 60 (2017), 1–15. https://doi.org/10.1016/j.engappai.2017.01.006 doi: 10.1016/j.engappai.2017.01.006 |
[15] | G. G. Wang, Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems, Memetic Comput., 10 (2018), 151–164. https://doi.org/10.1007/s12293-016-0212-3 doi: 10.1007/s12293-016-0212-3 |
[16] | F. A. Hashim, E. H. Houssein, M. S. Mabrouk, W. Al‐Atabany, S. Mirjalili, Henry gas solubility optimization: A novel physics-based algorithm, Future Gener. Comput. Syst., 101 (2019), 646–667. https://doi.org/10.1016/j.future.2019.07.015 doi: 10.1016/j.future.2019.07.015 |
[17] | A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028 |
[18] | S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300–323. https://doi.org/10.1016/j.future.2020.03.055 doi: 10.1016/j.future.2020.03.055 |
[19] | I. Ahmadianfar, A. A. Heidari, A. H. Gandomi, X. Chu, H. Chen, RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method, Expert Syst. Appl., 181 (2021), 115079. https://doi.org/10.1016/j.eswa.2021.115079 doi: 10.1016/j.eswa.2021.115079 |
[20] | J. Tu, H. Chen, M. Wang, A. H. Gandomi, The colony predation algorithmg, J. Bionic Eng., 18 (2021), 674–710. https://doi.org/10.1007/s42235-021-0050-y doi: 10.1007/s42235-021-0050-y |
[21] | I. Ahmadianfar, A. AsgharHeidari, S. Noshadian, H. Chen, A. HGandomi, INFO: An efficient optimization algorithm based on weighted mean of vectors, Expert Syst. Appl., 195 (2022), 116516. https://doi.org/10.1016/j.eswa.2022.116516 doi: 10.1016/j.eswa.2022.116516 |
[22] | G. G. Wang, S. Deb, X. Z. Gao, L. Coelho, A new metaheuristic optimization algorithm motivated by elephant herding behavior, Bio-Inspir. Comput., 8 (2016), 394–409. https://doi.org/10.1504/IJBIC.2016.081335 doi: 10.1504/IJBIC.2016.081335 |
[23] | Z. Zhang, H. Wang, H. Zhou, S. You, Parameter estimation of chaotic systems based on multi-mechanism hybrid image group Algorithm, Microelectron. Comput., 6 (2020), 40–45. |
[24] | M. S. Tavazoei, M. Haeri, Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms, Appl. Math. Comput., 187 (2007), 1076–1085. https://doi.org/10.1016/j.amc.2006.09.087 doi: 10.1016/j.amc.2006.09.087 |
[25] | F. Chakraborty, P. K. Roy, D. Nandi, Oppositional elephant herding optimization with dynamic Cauchy mutation for multilevel image thresholding, Evol. Intell., 12 (2019), 445–467. https://doi.org/10.1007/s12065-019-00238-1 doi: 10.1007/s12065-019-00238-1 |
[26] | W. Luo, H. Jin, H. Li, R. Zhou, Blind source separation of radar signals based on chaotic adaptive firework algorithm, Syst. Eng. Electr., 42 (2020), 2497–2505. |
[27] | F. Marini, B. Walczak, Particle swarm optimization (PSO). A tutorial, Chemom. Intell. Lab. Syst., 149 (2015), 153–165. https://doi.org/10.1016/j.chemolab.2015.08.020 doi: 10.1016/j.chemolab.2015.08.020 |
[28] | J. Liang, B. Qu, P. Suganthan, Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective RealParameter Numerical Optimization, in Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, (2014). |
[29] | N. Lynn, P. N. Suganthan, Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation, Swarm Evol. Comput., 24 (2015), 11–24. https://doi.org/10.1016/j.swevo.2015.05.002 doi: 10.1016/j.swevo.2015.05.002 |
[30] | Y. Xue, J. Jiang, B. Zhao, T. Ma, A self-adaptive artificial bee colony algorithm based on global best for global optimization, Soft Comput., 22 (2018), 2935–2952. https://doi.org/10.1007/s00500-017-2547-1 doi: 10.1007/s00500-017-2547-1 |
[31] | W. F. Gao, L. L. Huang, S. Y. Liu, C. Dai, Artificial bee colony algorithm based on information learning, IEEE Trans. Cybern, 45 (2015), 2827–2839. https://doi.org/10.1109/TCYB.2014.2387067 doi: 10.1109/TCYB.2014.2387067 |
[32] | Y. luo, H. Jin, H. Li, H. Rong, Blind source separation of radar signals based on chaotic adaptive fireworks algorithm, Syst. Eng. Electron. Technol., 42 (2020), 95–103. |
[33] | J. Peng, Y. Zhou, C. L. P. Chen, Region-kernel-based support vector machines for hyperspectral image classification, IEEE Trans. Geosci. Remote Sensing, 53 (2015), 4810–4824. https://doi.org/10.1109/TGRS.2015.2410991 doi: 10.1109/TGRS.2015.2410991 |
[34] | Z. Lv, X. Yan, Q. Jiang, Batch process monitoring based on self-adaptive subspace support vector data description, Chemom. Intell. Lab. Syst., 170 (2017), 25–31. https://doi.org/10.1016/j.chemolab.2017.09.009 doi: 10.1016/j.chemolab.2017.09.009 |
[35] | J. Yu, X. Yan, Whole process monitoring based on unstable neuron output information in hidden layers of deep belief network, IEEE Trans. Cybern., 50 (2020), 3998–4007. https://doi.org/10.1109/TCYB.2019.2948202 doi: 10.1109/TCYB.2019.2948202 |
[36] | Y. Shao, C. Zhang, X. Wang, N. Deng, Improvements on twin support vector machines, IEEE Trans. Neural Networks, 22 (2020), 962–968. https://doi.org/10.1109/TNN.2011.2130540 doi: 10.1109/TNN.2011.2130540 |
[37] | S. Zhang, X. Li, M. Zong, X. Zhu, R. Wang, Efficient kNN classification with different numbers of nearest neighbors, IEEE Trans. Neural Networks Learn. Syst., 29 (2018), 1774–1785. https://doi.org/10.1109/TNNLS.2017.2673241 doi: 10.1109/TNNLS.2017.2673241 |