In this paper, we study the initial boundary value problem of the pseudo-parabolic equation with a conformable derivative. We focus on investigating the existence of the global solution and examining the derivative's regularity. In addition, we contributed two interesting results. Firstly, we proved the convergence of the mild solution of the pseudo-parabolic equation to the solution of the parabolic equation. Secondly, we examine the convergence of solution when the order of the derivative of the fractional operator approaches $ 1^- $. Our main techniques used in this paper are Banach fixed point theorem and Sobolev embedding. We also apply different techniques to evaluate the convergence of generalized integrals encountered.
Citation: Huy Tuan Nguyen, Nguyen Van Tien, Chao Yang. On an initial boundary value problem for fractional pseudo-parabolic equation with conformable derivative[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 11232-11259. doi: 10.3934/mbe.2022524
In this paper, we study the initial boundary value problem of the pseudo-parabolic equation with a conformable derivative. We focus on investigating the existence of the global solution and examining the derivative's regularity. In addition, we contributed two interesting results. Firstly, we proved the convergence of the mild solution of the pseudo-parabolic equation to the solution of the parabolic equation. Secondly, we examine the convergence of solution when the order of the derivative of the fractional operator approaches $ 1^- $. Our main techniques used in this paper are Banach fixed point theorem and Sobolev embedding. We also apply different techniques to evaluate the convergence of generalized integrals encountered.
[1] | I. Podlubny, Fractional Differential Equations, Academic press, California, 1999. |
[2] | V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics, Longman, Harlow, 301 (1994). |
[3] | M. Al-Refai, Y. Luchko, Comparison principles for solutions to the fractional differential inequalities with the general fractional derivatives and their applications, J. Diff. Equations, 319 (2022), 312–324. https://doi.org/10.1016/j.jde.2022.02.054 doi: 10.1016/j.jde.2022.02.054 |
[4] | E. Topp, M. Yangari, Existence and uniqueness for parabolic problems with Caputo time derivative, J. Diff. Equations, 262 (2017), 6018–6046. https://doi.org/10.1016/j.jde.2017.02.024 doi: 10.1016/j.jde.2017.02.024 |
[5] | M. K. Saad, D. Baleanu, A. Atangana, New fractional derivatives applied to the Korteweg-de Vries and Korteweg-de Vries-Burger's equations, Comput. Appl. Math., 37 (2018), 5203–5216. https://doi.org/10.1007/s40314-018-0627-1 doi: 10.1007/s40314-018-0627-1 |
[6] | X. Wang, J. R. Wang, D. Shen, Y. Zhou, Convergence analysis for iterative learning control of conformable fractional differential equations, Math. Methods Appl. Sci., 41 (2018), 8315–8328. https://doi.org/10.1002/mma.5291 doi: 10.1002/mma.5291 |
[7] | V. F. Morales-Delgado, J. F. Gómez-Aguilar, R. F. Escobar-Jiménez, M. A. Taneco-Hernández, Fractional conformable derivatives of Liouville-Caputo type with low-fractionality, Phys. A., 503 (2018), 424–438. https://doi.org/10.1016/j.physa.2018.03.018 doi: 10.1016/j.physa.2018.03.018 |
[8] | S. He, K. Sun, X. Mei, B. Yan, S. Xu, Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative, Eur. Phys. J. Plus, 132 (2017), 36. https://doi.org/10.1140/epjp/i2017-11306-3 doi: 10.1140/epjp/i2017-11306-3 |
[9] | H. W. Zhou, S. Yang, S. Q. Zhang, Conformable derivative approach to anomalous diffusion, Phys. A., 491 (2018), 1001–1013. https://doi.org/10.1016/j.physa.2017.09.101 doi: 10.1016/j.physa.2017.09.101 |
[10] | N. H. Tuan, T. Caraballo, On initial and terminal value problems for fractional nonclassical diffusion equations, Proc. Amer. Math. Soc., 149 (2021), 143–161. https://doi.org/10.1090/proc/15131 doi: 10.1090/proc/15131 |
[11] | N. H. Tuan, T. B. Ngoc, D. Baleanu, D. O'Regan, On well-posedness of the sub-diffusion equation with conformable derivative model, Commun. Nonlinear Sci. Numer. Simul., 89 (2020), 105332. https://doi.org/10.1016/j.cnsns.2020.105332 doi: 10.1016/j.cnsns.2020.105332 |
[12] | N. H. Tuan, V. V. Au, R. Xu, Semilinear Caputo time-fractional pseudo-parabolic equations, Commun. Pure Appl. Anal., 20 (2021), 583–621. https://doi.org/10.3934/cpaa.2020282 doi: 10.3934/cpaa.2020282 |
[13] | T. Q. Minh, V. T. Thi, Some sharp results about the global existence and blowup of solutions to a class of coupled pseudo-parabolic equations, J. Math. Anal. Appl., 506 (2022), 125719. https://doi.org/10.1016/j.jmaa.2021.125719 doi: 10.1016/j.jmaa.2021.125719 |
[14] | X. Wang, R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261–288. https://doi.org/10.1515/anona-2020-0141 doi: 10.1515/anona-2020-0141 |
[15] | X. Q. Dai, J. B. Han, Q. Lin, X. T. Tian, Anomalous pseudo-parabolic Kirchhoff-type dynamical model, Adv. Nonlinear Anal., 11 (2022), 503–534. https://doi.org/10.1515/anona-2021-0207 doi: 10.1515/anona-2021-0207 |
[16] | R. Xu, X. Wang, Y. Yang, Blowup and blowup time for a class of semilinear pseudo-parabolic equations with high initial energy, Appl. Math. Lett., 83 (2018), 176–181. https://doi.org/10.1016/j.aml.2018.03.033 doi: 10.1016/j.aml.2018.03.033 |
[17] | R. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. https://doi.org/10.1016/j.jfa.2013.03.010 doi: 10.1016/j.jfa.2013.03.010 |
[18] | N. H. Luc, J. Hossein, P. Kumam, N. H. Tuan, On an initial value problem for time fractional pseudo-parabolic equation with Caputo derivative, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7204 doi: 10.1002/mma.7204 |
[19] | N. H. Can, D. Kumar, V. V. Tri, A. T. Nguyen, On time fractional pseudo-parabolic equations with non-local in time condition, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7196 doi: 10.1002/mma.7196 |
[20] | N. A. Tuan, Z. Hammouch, E. Karapinar, N. H. Tuan, On a nonlocal problem for a Caputo time-fractional pseudoparabolic equation, Math. Methods Appl. Sci., 44 (2021), 14791–14806. https://doi.org/10.1002/mma.7743 doi: 10.1002/mma.7743 |
[21] | R. Shen, M. Xiang, V. D. Rădulescu, Time-Space fractional diffusion problems: Existence, decay estimates and blow-up of solutions, Milan J. Math., 90 (2022), 103–129. https://doi.org/10.1007/s00032-021-00348-5 doi: 10.1007/s00032-021-00348-5 |
[22] | Y. Chen, H. Gao, M. Garrido-Atienza, B. Schmalfuss, Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete Contin. Dyn. Syst., 34 (2014), 79–98. https://doi.org/10.3934/dcds.2014.34.79 doi: 10.3934/dcds.2014.34.79 |
[23] | N. H. Tuan, On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 5465–5494. https://doi.org/10.3934/dcdsb.2020354 doi: 10.3934/dcdsb.2020354 |
[24] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016 |
[25] | A. A. Abdelhakim, J. A. Tenreiro Machado, A critical analysis of the conformable derivative, Nonlinear Dynam., 95 (2019), 3063–3073. https://doi.org/10.1007/s11071-018-04741-5 doi: 10.1007/s11071-018-04741-5 |
[26] | A. Jaiswal, D. Bahuguna, Semilinear Conformable Fractional Differential Equations in Banach Spaces, Differ. Equ. Dyn. Syst., 27 (2019), 313–325. https://doi.org/10.1007/s12591-018-0426-6 doi: 10.1007/s12591-018-0426-6 |
[27] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[28] | M. Li, J. R. Wang, D. O'Regan, Existence and Ulam's stability for conformable fractional differential equations with constant coefficients, Bull. Malays. Math. Sci. Soc., 42 (2019), 1791–1812. https://doi.org/10.1007/s40840-017-0576-7 doi: 10.1007/s40840-017-0576-7 |
[29] | J. R. L. Webb, Weakly singular Gronwall inequalities and applications to fractional differential equations, J. Math. Anal. Appl., 471 (2019), 692–711. https://doi.org/10.1016/j.jmaa.2018.11.004 doi: 10.1016/j.jmaa.2018.11.004 |
[30] | K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426–447. https://doi.org/10.1016/j.jmaa.2011.04.058 doi: 10.1016/j.jmaa.2011.04.058 |