Research article Special Issues

The impact of vaccination on the evolution of COVID-19 in Portugal


  • Received: 31 August 2021 Accepted: 09 November 2021 Published: 22 November 2021
  • In this work we use simple mathematical models to study the impact of vaccination against COVID-19 in Portugal. First, we fit a SEIR type model without vaccination to the Portuguese data on confirmed cases of COVID-19 by the date of symptom onset, from the beginning of the epidemic until the 23rd January of 2021, to estimate changes in the transmission intensity. Then, by including vaccination in the model we develop different scenarios for the fade-out of the non pharmacological intervention (NPIs) as vaccine coverage increases in the population according to Portuguese vaccination goals. We include a feedback function to mimic the implementation and relaxation of NPIs, according to some disease incidence thresholds defined by the Portuguese health authorities.

    Citation: Beatriz Machado, Liliana Antunes, Constantino Caetano, João F. Pereira, Baltazar Nunes, Paula Patrício, M. Luísa Morgado. The impact of vaccination on the evolution of COVID-19 in Portugal[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 936-952. doi: 10.3934/mbe.2022043

    Related Papers:

  • In this work we use simple mathematical models to study the impact of vaccination against COVID-19 in Portugal. First, we fit a SEIR type model without vaccination to the Portuguese data on confirmed cases of COVID-19 by the date of symptom onset, from the beginning of the epidemic until the 23rd January of 2021, to estimate changes in the transmission intensity. Then, by including vaccination in the model we develop different scenarios for the fade-out of the non pharmacological intervention (NPIs) as vaccine coverage increases in the population according to Portuguese vaccination goals. We include a feedback function to mimic the implementation and relaxation of NPIs, according to some disease incidence thresholds defined by the Portuguese health authorities.



    加载中


    [1] T. Singhal, A review of coronavirus disease-2019 (COVID-19), Indian J. Pediatr, 87 (2020), 281–286. doi: 10.1007/s12098-020-03263-6. doi: 10.1007/s12098-020-03263-6
    [2] A. Mavragani, K. Gkillas, Exploring the role of non-pharmaceutical interventions (NPIs) in flattening the Greek COVID-19 epidemic curve, Sci. Rep., 11 (2021), 11741. doi: 10.1038/s41598-021-90293-5. doi: 10.1038/s41598-021-90293-5
    [3] C. Pawlowski, P. Lenehan, A. Puranik, V. Agarwal, A. J. Venkatakrishnan, M. J. M. Niesen, et al., FDA-authorized mRNA COVID-19 vaccines are effective per real-world evidence synthesized across a multi-state health system, Med, 2 (2021), 979–992. doi: 10.1016/j.medj.2021.06.007. doi: 10.1016/j.medj.2021.06.007
    [4] Z. Wang, C. T. Bauch, S. Bhattacharyya, A. d'Onofrio, P. Manfredi, M. Perc, et al., Statistical physics of vaccination, Phys. Rep., 664 (2016), 1–113. doi: 10.1016/j.physrep.2016.10.006. doi: 10.1016/j.physrep.2016.10.006
    [5] Z. Memon, S. Qureshi, B. R. Memon, Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: a case study, Chaos Solutions Factals, 144 (2021). doi: 10.1016/j.chaos.2021.110655.
    [6] S. S. Musa, S. Qureshi, S. Zhao, A. Yusuf, U. T. Mustapha, D. He, Mathematical modeling of COVID-19 epidemic with effect of awareness programs, Infect. Dis. Model., 6 (2021), 448-460. doi: 10.1016/j.idm.2021.01.012. doi: 10.1016/j.idm.2021.01.012
    [7] O. J. Peter, S. Qureshi, A. Yusuf, M. Al-Shomrani, A. A. Idowu, A new mathematical model of COVID-19 using real data from Pakista, Results Phys., 24 (2021). doi: 10.1016/j.rinp.2021.104098.
    [8] M. Amouch, N. Karim, Modeling the dynamic of COVID-19 with different types of transmissions, Chaos Solitions Fractals, 150 (2021). doi: 10.1016/j.chaos.2021.111188.
    [9] P. Harjule, V. Tiwari, A. Kumar, Mathematical models to predict COVID-19 outbreak : an interim review, J. Int. Math., 24 (2021), 259–284. doi: 10.1080/09720502.2020.1848316. doi: 10.1080/09720502.2020.1848316
    [10] S. Moore, E. M. Hill, M. J. Tildesley, L. Dyson, M. J. Keeling, Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study, Lancet Infect. Dis., 21 (2021), 793–802. doi: 10.1016/S1473-3099(21)00143-2. doi: 10.1016/S1473-3099(21)00143-2
    [11] C. Caetano, M. L. Morgado, P. Patrício, J. F. Pereira, B. Nunes, Mathematical modelling of the impact of non-pharmacological strategies to control the COVID-19 epidemic in Portugal, Mathematics, 9 (2021), 1084. doi: 10.3390/math9101084. doi: 10.3390/math9101084
    [12] A. P. Lemos-Paião, C. J. Silva, D. F. M. Torres, A new compartmental epidemiological model for COVID-19 with a case study of Portugal, Ecol. Complex., 44 (2020), 100885. doi: 10.1016/j.ecocom.2020.100885. doi: 10.1016/j.ecocom.2020.100885
    [13] J. Viana, C. H. van Dorp, A. Nunes, M. C. Gomes, M. van Boven, M. E. Kretzschmar, et al., Controlling the pandemic during the SARS-CoV-2 vaccination rollout, Nat. Commun., 12 (2021), 3674. doi: 10.21203/rs.3.rs-358417/v1. doi: 10.21203/rs.3.rs-358417/v1
    [14] D. H. Glass, European and US lockdowns and second waves during the COVID-19 pandemic, Math. Biosci., 330 (2020), 108472. doi: 10.1016/j.mbs.2020.108472. doi: 10.1016/j.mbs.2020.108472
    [15] K. Markowitz, M. Strickland, A. Huang, Fever and other clinical indicators may fail to detect COVID-19–infected individuals, J. Evidence Based Dental Pract., 20 (2020), 101499. doi: 10.1016/j.jebdp.2020.101499. doi: 10.1016/j.jebdp.2020.101499
    [16] W. Andrew, D. McEvoy, A. B. Collins, K. Hunt, M. Casey, A. Barber, et al., Inferred duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases, BMJ Open, 10 (2020). doi: 10.1136/bmjopen-2020-039856.
    [17] N. Barda, N. Dagan, R. D. Balicer, BNT162b2 mRNA COVID-19 vaccine in a nationwide mass vaccination setting, N. Engl. J. Med., 384 (2021), 1412–1423. doi: 10.1056/NEJMoa2101765. doi: 10.1056/NEJMoa2101765
    [18] P. T. Heath, E. P. Galiza, D. N. Baxter, M. Boffito, D. Browne, F. Burns, et al., Safety and efficacy of NVX-CoV2373 COVID-19 vaccine, N. Engl. J. Med., 30 (2021). doi: 10.1056/NEJMoa2107659.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3734) PDF downloads(226) Cited by(14)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog