Research article Special Issues

Optimal strategic pandemic control: human mobility and travel restriction


  • Received: 24 August 2021 Accepted: 11 October 2021 Published: 02 November 2021
  • This paper presents a model for finding optimal pandemic control policy considering cross-region human mobility. We extend the baseline susceptible-infectious-recovered (SIR) epidemiology model by including the net human mobility from a severely-impacted region to a mildly-affected region. The strategic optimal mitigation policy combining testing and lockdown in each region is then obtained with the goal of minimizing economic cost under the constraint of limited resources. We parametrize the model using the data of the COVID-19 pandemic and show that the optimal response strategy and mitigation outcome greatly rely on the mitigation duration, available resources, and cross-region human mobility. Furthermore, we discuss the economic impact of travel restriction policies through a quantitative analysis.

    Citation: Wentao Hu, Yufeng Shi, Cuixia Chen, Ze Chen. Optimal strategic pandemic control: human mobility and travel restriction[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 9525-9562. doi: 10.3934/mbe.2021468

    Related Papers:

  • This paper presents a model for finding optimal pandemic control policy considering cross-region human mobility. We extend the baseline susceptible-infectious-recovered (SIR) epidemiology model by including the net human mobility from a severely-impacted region to a mildly-affected region. The strategic optimal mitigation policy combining testing and lockdown in each region is then obtained with the goal of minimizing economic cost under the constraint of limited resources. We parametrize the model using the data of the COVID-19 pandemic and show that the optimal response strategy and mitigation outcome greatly rely on the mitigation duration, available resources, and cross-region human mobility. Furthermore, we discuss the economic impact of travel restriction policies through a quantitative analysis.



    加载中


    [1] L. Sattenspiel, K. Dietz, A structured epidemic model incorporating geographic mobility among regions, Math. Biosci., 128 (1995), 71–92. doi: 10.1016/0025-5564(94)00068-B
    [2] N. M. Ferguson, D. A. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley, D. S. Burke, Strategies for mitigating an influenza pandemic, Nature, 442 (2006), 448–452. doi: 10.1038/nature04795
    [3] T. D. Hollingsworth, N. M. Ferguson, R. M. Anderson, Will travel restrictions control the international spread of pandemic influenza? Nat. Med., 12 (2006), 497–499. doi: 10.1038/nm0506-497
    [4] D. A. Robertson, Spatial transmission models: a taxonomy and framework, Risk Anal., 39 (2019), 225–243. doi: 10.1111/risa.13142
    [5] S. Lai, N. W. Ruktanonchai, L. Zhou, O. Prosper, W. Luo, J. R. Floyd, et al., Effect of non-pharmaceutical interventions for containing the COVID-19 outbreak in China, medRxiv, 2020.
    [6] L. A. Rvachev, I. M. Longini Jr, A mathematical model for the global spread of influenza, Math. Biosci., 75 (1985), 3–22. doi: 10.1016/0025-5564(85)90064-1
    [7] W. Wang, X. Q. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97–112. doi: 10.1016/j.mbs.2002.11.001
    [8] H. Seno, An sis model for the epidemic dynamics with two phases of the human day-to-day activity, J. Math. Biol., 80 (2020), 2109–2140. doi: 10.1007/s00285-020-01491-0
    [9] S. Biswas, A. K. Mandal, Optimization strategies of human mobility during the COVID-19 pandemic: a review, preprint, arXiv: 2105.15185.
    [10] P. Bajardi, C. Poletto, J. J. Ramasco, M. Tizzoni, V. Colizza, A. Vespignani, Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic, PloS One, 6 (2011), e0016591.
    [11] Q. Wang, J. E. Taylor, Patterns and limitations of urban human mobility resilience under the influence of multiple types of natural disaster, PLoS One, 11 (2016), e0147299. doi: 10.1371/journal.pone.0147299
    [12] V. Charu, S. Zeger, J. Gog, O. N. Bjørnstad, S. Kissler, L. Simonsen, et al., Human mobility and the spatial transmission of influenza in the United States, PLoS Comput. Biol., 13 (2017), e1005382. doi: 10.1371/journal.pcbi.1005382
    [13] H. Fang, L. Wang, Y. Yang, Human mobility restrictions and the spread of the novel coronavirus (2019-nCoV) in China, J. Public Econ., 191 (2020), 104272. doi: 10.1016/j.jpubeco.2020.104272
    [14] M. U. Kraemer, C. H. Yang, B. Gutierrez, C. H. Wu, B. Klein, D. M. Pigott, et al., The effect of human mobility and control measures on the COVID-19 epidemic in China, Science, 368 (2020), 493–497. doi: 10.1126/science.abb4218
    [15] T. Yabe, K. Tsubouchi, N. Fujiwara, T. Wada, Y. Sekimoto, S. V. Ukkusuri, Non-compulsory measures sufficiently reduced human mobility in Tokyo during the COVID-19 epidemic, Sci. Rep., 10 (2020), 1–9. doi: 10.1038/s41598-020-67245-6
    [16] C. Xiong, S. Hu, M. Yang, W. Luo, L. Zhang, Mobile device data reveal the dynamics in a positive relationship between human mobility and COVID-19 infections, Proc. Natl. Acad. Sci., 117 (2020), 27087–27089. doi: 10.1073/pnas.2010836117
    [17] A. Remuzzi, G. Remuzzi, COVID-19 and italy: what next? Lancet, 395 (2020), 1225–1228. doi: 10.1016/S0140-6736(20)30627-9
    [18] Y. Yue, C. Yu, L. Keji, L. Xinyue, X. Boxi, J. Yu, et al., Modeling and prediction for the trend of outbreak of NCP based on a time-delay dynamic system, Sci. Sin. Math., 50 (2020), 385. doi: 10.1360/SSM-2020-0026
    [19] B. Tang, N. L. Bragazzi, Q. Li, S. Tang, Y. Xiao, J. Wu, An updated estimation of the risk of transmission of the novel coronavirus (2019-nCoV), Infect. Dis. Modell., 5 (2020), 248–255. doi: 10.1016/j.idm.2020.02.001
    [20] T. Duke, M. English, S. Carai, S. Qazi, Paediatric care in the time of COVID-19 in countries with under-resourced healthcare systems, Arch. Dis. Child., 105 (2020), 616–617. doi: 10.1136/archdischild-2020-319333
    [21] W. T. Siow, M. F. Liew, B. R. Shrestha, F. Muchtar, K. C. See, Managing COVID-19 in resource-limited settings: critical care considerations, Crit. Care, 24 (2020), 167. doi: 10.1186/s13054-020-02890-x
    [22] S. P. Adhikari, S. Meng, Y. J. Wu, Y. P. Mao, R. X. Ye, Q. Z. Wang, et al., Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review, Infect. Dis. Poverty, 9 (2020), 1–12. doi: 10.1186/s40249-019-0617-6
    [23] A. Charpentier, R. Elie, M. Laurière, V. C. Tran, COVID-19 pandemic control: balancing detection policy and lockdown intervention under ICU sustainability, preprint, arXiv: 2005.06526.
    [24] C. Hou, J. Chen, Y. Zhou, L. Hua, J. Yuan, S. He, et al., The effectiveness of quarantine of wuhan city against the corona virus disease 2019 (COVID-19): a well-mixed seir model analysis, J. Med. Virol., 92 (2020), 841–848. doi: 10.1002/jmv.25827
    [25] R. M. Jones, E. Adida, Selecting nonpharmaceutical interventions for influenza, Risk Anal., 33 (2013), 1473–1488. doi: 10.1111/j.1539-6924.2012.01938.x
    [26] E. Tognotti, Lessons from the history of quarantine, from plague to influenza A, Emerging Infect. Dis., 19 (2013), 254. doi: 10.3201/eid1902.120312
    [27] C. Nicolaides, D. Avraam, L. Cueto-Felgueroso, M. C. González, R. Juanes, Hand-hygiene mitigation strategies against global disease spreading through the air transportation network, Risk Anal., 40 (2020), 723–740. doi: 10.1111/risa.13438
    [28] F. Piguillem, L. Shi, The optimal COVID-19 quarantine and testing policies, 2020. Available from: https://ssrn.com/abstract=3594243.
    [29] D. W. Berger, K. F. Herkenhoff, S. Mongey, An seir infectious disease model with testing and conditional quarantine, Tech. Rep. Natl. Bur. Econ. Res., 2020.
    [30] L. Roques, E. K. Klein, J. Papaix, A. Sar, S. Soubeyrand, Effect of a one-month lockdown on the epidemic dynamics of COVID-19 in France, medRxiv, 2020.
    [31] A. Atkeson, What will be the economic impact of COVID-19 in the us? Rough estimates of disease scenarios, Tech. Rep. Natl. Bur. Econ. Res., 2020.
    [32] G. Bonaccorsi, F. Pierri, M. Cinelli, A. Flori, A. Galeazzi, F. Porcelli, et al., Economic and social consequences of human mobility restrictions under COVID-19, Proc. Natl. Acad. Sci., 117 (2020), 15530–15535. doi: 10.1073/pnas.2007658117
    [33] G. M. Hadjidemetriou, M. Sasidharan, G. Kouyialis, A. K. Parlikad, The impact of government measures and human mobility trend on COVID-19 related deaths in the UK, Transp. Res. Int. Perspect., 6 (2020), 100167.
    [34] A. Galeazzi, M. Cinelli, G. Bonaccorsi, F. Pierri, A. L. Schmidt, A. Scala, et al., Human mobility in response to COVID-19 in France, Italy and UK, Sci. Rep., 11 (2021), 1–10. doi: 10.1038/s41598-020-79139-8
    [35] C. J. Jones, T. Philippon, V. Venkateswaran, Optimal mitigation policies in a pandemic: Social distancing and working from home, Rev. Financ. Stud., 34 (2021), 5188–5223. doi: 10.1093/rfs/hhab076
    [36] C. D. Huang, M. Baghersad, R. S. Behara, C. W. Zobel, Optimal investment in prevention and recovery for mitigating epidemic risks, Risk Anal., 2021.
    [37] M. Shen, Y. Xiao, G. Zhuang, Y. Li, L. Zhang, Mass testing-an underexplored strategy for COVID-19 control, Innovation, 2 (2021), 100114.
    [38] B. Tang, W. Zhou, X. Wang, H. Wu, Y. Xiao, S. Tang, Controlling multiple COVID-19 epidemic waves: an insight from a multi-scale model linking the behaviour change dynamics to the disease transmission dynamics, medRxiv, 2021.
    [39] B. Tang, F. Xia, S. Tang, N. L. Bragazzi, Q. Li, X. Sun, et al., The effectiveness of quarantine and isolation determine the trend of the COVID-19 epidemic in the final phase of the current outbreak in china, Int. J. Infect. Dis., 96 (2020), 636–647. doi: 10.1016/j.ijid.2020.05.113
    [40] R. J. Barro, J. F. Ursua, J. Weng, The coronavirus and the great influenza epidemic: lessons from the "spanish flu" for the coronavirus's potential effects on mortality and economic activity, Tech. Rep. Natl. Bur. Econ. Res., 2020.
    [41] M. Dewatripont, M. Goldman, E. Muraille, J. P. Platteau, Rapid identification of workers immune to COVID-19 and virus-free: a priority to restart the economy, Tech. Rep. Discuss. Pap. Univ. Libre Bruxelles, 2020.
    [42] M. S. Eichenbaum, S. Rebelo, M. Trabandt, The macroeconomics of epidemics, Rev. Financ. Stud., 34 (2021), 5149–5187. doi: 10.1093/rfs/hhab040
    [43] R. E. Hall, C. I. Jones, P. J. Klenow, Trading off consumption and COVID-19 deaths, Tech. Rep. Natl. Bur. Econ. Res., 2020.
    [44] R. Baldwin, B. W. di Mauro, Mitigating the COVID Economic Crisis: Act Fast and Do Whatever It Takes, VoxEU, org eBook.
    [45] H. W. Hethcote, H. W. Stech, P. Van Den Driessche, Periodicity and stability in epidemic models: a survey, Differ. Equations Appl. Ecol. Epidemics Popul. Probl., (1981), 65–82.
    [46] R. M. Anderson, R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1992.
    [47] F. Brauer, C. Castillo-Chavez, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, New York, Springer, 2012.
    [48] C. Lefèvre, Sir Epidemic Models, Wiley StatsRef: Statistics Reference Online.
    [49] B. Tang, Y. Xiao, J. Wu, Implication of vaccination against dengue for zika outbreak, Sci. Rep., 6 (2016), 1–14. doi: 10.1038/s41598-016-0001-8
    [50] Y. Xue, X. Ruan, Y. Xiao, Measles dynamics on network models with optimal control strategies, Adv. Differ. Equations, 1 (2021), 1–18.
    [51] R. Feng, J. Garrido, Actuarial applications of epidemiological models, North Am. Actuar. J., 15 (2011), 112–136. doi: 10.1080/10920277.2011.10597612
    [52] X. Chen, W. F. Chong, R. Feng, L. Zhang, Pandemic risk management: resources contingency planning and allocation, Insur. Math. Econ., 2020.
    [53] N. Ferguson, D. Laydon, G. Nedjati Gilani, N. Imai, K. Ainslie, M. Baguelin, et al., Report 9: impact of non-pharmaceutical interventions (npis) to reduce COVID-19 mortality and healthcare demand, 2020.
    [54] X. Sun, Y. Xiao, X. Ji, When to lift the lockdown in hubei province during COVID-19 epidemic? An insight from a patch model and multiple source data, J. Theor. Biol., 507 (2020), 110469. doi: 10.1016/j.jtbi.2020.110469
    [55] M. Gatto, E. Bertuzzo, L. Mari, S. Miccoli, L. Carraro, R. Casagrandi, et al., Spread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measures, Proc. Natl. Acad. Sci., 117 (2020), 10484–10491. doi: 10.1073/pnas.2004978117
    [56] Y. Shi, Epidemic outbreak and information disclosure, Tech. Rep., Citeseer, 2007.
    [57] H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci., 28 (1976), 335–356. doi: 10.1016/0025-5564(76)90132-2
    [58] J. Arino, P. Van Den Driessche, A multi-city epidemic model, Math. Popul. Stud., 10 (2003), 175–193. doi: 10.1080/08898480306720
    [59] J. Sanders, B. Noble, R. A. Van Gorder, C. Riggs, Mobility matrix evolution for an sis epidemic patch model, Phys. A, 391 (2012), 6256–6267. doi: 10.1016/j.physa.2012.07.023
    [60] M. C. Read, High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2, Emerg. Infect. Dis., 26 (2020), 1470–1477. doi: 10.3201/eid2607.200282
    [61] H. Tian, Y. Liu, Y. Li, C. H. Wu, B. Chen, M. U. Kraemer, et al., An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China, Science, 368 (2020), 638–642. doi: 10.1126/science.abb6105
    [62] B. Xu, B. Gutierrez, S. Mekaru, K. Sewalk, L. Goodwin, A. Loskill, et al., Epidemiological data from the COVID-19 outbreak, real-time case information, Sci. Data, 7 (2020), 1–6. doi: 10.1038/s41597-019-0340-y
    [63] J. Lee, B. Y. Choi, E. Jung, Metapopulation model using commuting flow for national spread of the 2009 H1N1 influenza virus in the Republic of Korea, J. Theor. Biol., 454 (2018), 320–329. doi: 10.1016/j.jtbi.2018.06.016
    [64] W. Wang, X. Q. Zhao, An age-structured epidemic model in a patchy environment, SIAM J. Appl. Math., 65 (2005), 1597–1614. doi: 10.1137/S0036139903431245
    [65] Y. Nakata, G. Röst, Global analysis for spread of infectious diseases via transportation networks, J. Math. Biol., 70 (2015), 1411–1456. doi: 10.1007/s00285-014-0801-z
    [66] P. Van Den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. doi: 10.1016/S0025-5564(02)00108-6
    [67] Y. Takeuchi, Y. Saito, J. Cui, Spreading disease with transport-related infection, J. Theor. Biol., 239 (2006), 376–390. doi: 10.1016/j.jtbi.2005.08.005
    [68] M. J. Keeling, L. Danon, M. C. Vernon, T. A. House, Individual identity and movement networks for disease metapopulations, Proc. Natl. Acad. Sci., 107 (2010), 8866–8870. doi: 10.1073/pnas.1000416107
    [69] J. Cui, Y. Zhang, Z. Feng, Influence of non-homogeneous mixing on final epidemic size in a meta-population model, J. Biol. Dyn., 13 (2019), 31–46. doi: 10.1080/17513758.2018.1484186
    [70] L. Sattenspiel, D. A. Herring, Structured epidemic models and the spread of influenza in the central Canadian subarctic, Hum. Biol., 70 (1998), 91–115.
    [71] L. Sattenspiel, D. A. Herring, Simulating the effect of quarantine on the spread of the 1918–19 flu in central Canada, Bull. Math. Biol., 65 (2003), 1–26. doi: 10.1006/bulm.2002.0317
    [72] D. O'Sullivan, M. Gahegan, D. Exeter, B. Adams, Spatially-explicit models for exploring COVID-19 lockdown strategies, Trans. GIS, 2020.
    [73] D. L. Martinez, T. K. Das, Design of non-pharmaceutical intervention strategies for pandemic influenza outbreaks, BMC Public Health, 14 (2014), 1328. doi: 10.1186/1471-2458-14-1328
    [74] J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in wuhan, china: a modelling study, Lancet, 395 (2020), 689–697. doi: 10.1016/S0140-6736(20)30260-9
    [75] F. E. Alvarez, D. Argente, F. Lippi, A simple planning problem for COVID-19 lockdown, Tech. Rep. Natl. Bur. Econ. Res., 2020.
    [76] O. Diekmann, J. A. P. Heesterbeek, J. A. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382.
    [77] E. Hansen, T. Day, Optimal control of epidemics with limited resources, J. Math. Biol., 62 (2011), 423–451. doi: 10.1007/s00285-010-0341-0
    [78] R. Djidjou-Demasse, Y. Michalakis, M. Choisy, M. T. Sofonea, S. Alizon, Optimal COVID-19 epidemic control until vaccine deployment, medRxiv, 2020.
    [79] N. Halder, J. K. Kelso, G. J. Milne, Analysis of the effectiveness of interventions used during the 2009 a/H1N1 influenza pandemic, BMC Public Health, 10 (2010), 168. doi: 10.1186/1471-2458-10-168
    [80] J. G. Aunins, M. E. Laska, B. R. Phillips, J. M. Otero, Chemical engineering perspectives on vaccine production, Chem. Eng. Prog., 107 (2011), 37–47.
    [81] J. Cave, Introduction to Game Theory, Oxford University Press, New York, 2004.
    [82] M. J. Osborne et al., An Introduction to Game Theory, Oxford University Press, New York, 3 (2004).
    [83] P. Morris, Introduction to Game Theory, Springer Science & Business Media, 2012.
    [84] F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study, Lancet, 395 (2020), 1054–1062. doi: 10.1016/S0140-6736(20)30566-3
    [85] S. Ai, G. Zhu, F. Tian, H. Li, Y. Gao, Y. Wu, et al., Population movement, city closure and spatial transmission of the 2019-nCoV infection in China, medRxiv, 2020.
    [86] J. S. Jia, X. Lu, Y. Yuan, G. Xu, J. Jia, N. A. Christakis, Population flow drives spatio-temporal distribution of COVID-19 in China, Nature, 582, (2020), 389–394. doi: 10.1038/s41586-020-2284-y
    [87] S. Devi, Travel restrictions hampering COVID-19 response, Lancet, 395 (2020), 1331–1332. doi: 10.1016/S0140-6736(20)30967-3
    [88] M. Chinazzi, J. T. Davis, M. Ajelli, C. Gioannini, M. Litvinova, S. Merler, et al., The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak, Science, 368 (2020), 395–400. doi: 10.1126/science.aba9757
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3027) PDF downloads(128) Cited by(2)

Article outline

Figures and Tables

Figures(15)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog