Research article Special Issues

Growth and form, Lie algebras and special functions

  • Received: 16 February 2021 Accepted: 07 April 2021 Published: 25 April 2021
  • The formation of a biological organism, or an organ within it, can often be regarded as the unfolding of successive equilibria of a mechanical system. In a mathematical model, these changes of equilibria may be considered to be responses of mechanically constrained systems to a change of a reference configuration and of a reference metric, which are in turn driven by genes and their expression. This paper brings together three major threads of research. These are: Lie-type symmetries of equations; models as well as data on growth and pattern formation; and the relation between Lie algebras (and groups) and special functions associated with them. We show that symmetry methods can be generalized to map between solutions to models with different reference metrics. In the case in which we attempt to obtain such equations, they seem too complicated to be of any immediate service to the community of researchers on cortical growth. However, models and data on growth may be used to obtain generators of these Lie algebras empirically and numerically. These generators result in new classes of special functions. The paper is an invitation to develop what we may call empirical Lie algebras and associated functions. The hypothesis that remains to be tested is whether the confluence of ideas described in the paper, namely the Lie algebraic-related consequences of pattern formation and growth, prove useful for deepened understanding of biological growth patterns.

    Citation: Raghu Raghavan. Growth and form, Lie algebras and special functions[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 3598-3645. doi: 10.3934/mbe.2021181

    Related Papers:

  • The formation of a biological organism, or an organ within it, can often be regarded as the unfolding of successive equilibria of a mechanical system. In a mathematical model, these changes of equilibria may be considered to be responses of mechanically constrained systems to a change of a reference configuration and of a reference metric, which are in turn driven by genes and their expression. This paper brings together three major threads of research. These are: Lie-type symmetries of equations; models as well as data on growth and pattern formation; and the relation between Lie algebras (and groups) and special functions associated with them. We show that symmetry methods can be generalized to map between solutions to models with different reference metrics. In the case in which we attempt to obtain such equations, they seem too complicated to be of any immediate service to the community of researchers on cortical growth. However, models and data on growth may be used to obtain generators of these Lie algebras empirically and numerically. These generators result in new classes of special functions. The paper is an invitation to develop what we may call empirical Lie algebras and associated functions. The hypothesis that remains to be tested is whether the confluence of ideas described in the paper, namely the Lie algebraic-related consequences of pattern formation and growth, prove useful for deepened understanding of biological growth patterns.



    加载中


    [1] W. T. D'Arcy, On Growth and Form, Dover Publications, 1992.
    [2] J. Altman, Neural and mental evolution: origins of the human body, brain, behavior, consciousness, and culture, Laboratory of Developmental Neurobiology, Inc., 2013. Available from: https://brainmindevolution.org/.
    [3] K. Amunts, C. Lepage, L. Borgeat, H. Mohlberg, T. Dickscheid, M. É. Rousseau, et al., BigBrain: an ultrahigh-resolution 3D human brain model, Science, 340 (2013), 1472–1475. doi: 10.1126/science.1235381
    [4] P. V. Bayly, R. J. Okamoto, G. Xu, Y. Shi, L. A. Taber, A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain, Phys. Biol., 10 (2013), 016005. doi: 10.1088/1478-3975/10/1/016005
    [5] P. V. Bayly, L. A. Taber, C. D. Kroenke, Mechanical forces in cerebral cortical folding: a review of measurements and models, J. Mech. Behav. Biomed. Mater., 29 (2014), 568–581. doi: 10.1016/j.jmbbm.2013.02.018
    [6] M. A. Biot, Mechanics of Incremental Deformations, John Wiley & Sons, 1965.
    [7] S. Budday, C. Raybaud, E. Kuhl, A mechanical model predicts morphological abnormalities in the developing human brain, Sci. Rep., 4 (2014), 5644.
    [8] R. Chelakkot, L. Mahadevan, On the growth and form of shoots, J. R. Soc., Interface, 14 (2017), 20170001. doi: 10.1098/rsif.2017.0001
    [9] B. Fischl, M. I. Sereno, R. B. H. Tootell, A. M. Dale, High-resolution intersubject averaging and a coordinate system for the cortical surface, Hum. Brain Mapp., 8 (1999), 272–284. doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
    [10] L. M. J. Florack, B. M. T. H. Romeny, J. J. Koenderink, M. A. Viergever, Cartesian differential invariants in scale-space, J. Math. Imaging Vision, 3 (1993), 327–348. doi: 10.1007/BF01664793
    [11] L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, M. A. Viergever, Linear scale-space, J. Math. Imaging Vision, 4 (1994), 325–351.
    [12] G. Franceschini, D. Bigoni, P. Regitnig, G. A. Holzapfel, Brain tissue deforms similarly to filled elastomers and follows consolidation theory, J. Mech. Phys. Solids, 54 (2006), 2592–2620. doi: 10.1016/j.jmps.2006.05.004
    [13] K. E. Garcia, E. C. Robinson, D. Alexopoulos, D. L. Dierker, M. F. Glasser, T. S. Coalson, et al., Dynamic patterns of cortical expansion during folding of the preterm human brain, Proc. Natl. Acad. Sci., 115 (2018), 3156–3161. doi: 10.1073/pnas.1715451115
    [14] G. Geng, L. A. Johnston, E. Yan, J. M. Britto, D. W. Smith, D. W. Walker, et al., Biomechanisms for modelling cerebral cortical folding, Med. Image Anal., 13 (2009), 920–930. doi: 10.1016/j.media.2008.12.005
    [15] J. N. Giedd, J. Blumenthal, N. O. Jeffries, F. X. Castellanos, J. L. Rapoport, Brain development during childhood and adolescence: a longitudinal MRI study, Nat. Neurosci., 2 (1999), 861–863. doi: 10.1038/13158
    [16] M. F. Glasser, T. S. Coalson, E. C. Robinson, C. D. Hacker, J. Harwell, E. Yacoub, et al., A multi-modal parcellation of human cerebral cortex, Nature, 536 (2016), 171–178. doi: 10.1038/nature18933
    [17] E. Hohlfeld, L. Mahadevan, Unfolding the sulcus, Phys. Rev. Lett., 106 (2011), 105702.
    [18] E. Hohlfeld, L. Mahadevan, Scale and nature of sulcification patterns, Phys. Rev. Lett., 109 (2012), 025701. doi: 10.1103/PhysRevLett.109.025701
    [19] M. A. Holland, K. E. Miller, E. Kuhl, Emerging brain morphologies from axonal elongation, Ann. Biomed. Eng., 43 (2015), 1640–1653. doi: 10.1007/s10439-015-1312-9
    [20] R. C. Knickmeyer, S. Gouttard, C. Kang, D. Evans, K. Wilber, J. Keith Smith, et al., A structural MRI study of human brain development from birth to 2 years, J. Neurosci., 28 (2008), 12176–12182. doi: 10.1523/JNEUROSCI.3479-08.2008
    [21] T. Lindeberg, Scale-Space Theory in Computer Vision, Springer Science & Business Media, 2013.
    [22] K. L. Mills, C. K. Tamnes, Methods and considerations for longitudinal structural brain imaging analysis across development", author="Mills, Kathryn L and Tamnes, Christian K, Dev. Cognit. Neurosci., 9 (2014), 172–190. doi: 10.1016/j.dcn.2014.04.004
    [23] J. Nie, L. Guo, G. Li, C. Faraco, L. S. Miller, T. Liu, A computational model of cerebral cortex folding, J. Theor. Biol., 264 (2010), 467–478. doi: 10.1016/j.jtbi.2010.02.002
    [24] M. Nonaka-Kinoshita, I. Reillo, B. Artegiani, M. A. Martínez-Martínez, M. Nelson, V. Borrell, et al., Regulation of cerebral cortex size and folding by expansion of basal progenitor, EMBO J., 32 (2013), 1817–1828. doi: 10.1038/emboj.2013.96
    [25] I. Reillo, C. de Juan Romero, M. A. García-Cabezas, V. Borrell, A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex, Cereb. Cortex, 21 (2011), 1674–1694. doi: 10.1093/cercor/bhq238
    [26] L. Ronan, N. Voets, C. Rua, A. Alexander-Bloc, M. Hough, C. Mackay, et al., Differential tangential expansion as a mechanism for cortical gyrification, Cereb. Cortex, 24 (2014), 2219–2228. doi: 10.1093/cercor/bht082
    [27] A. Serag, P. Aljabar, G. Ball, S. J. Counsell, J. P. Boardman, M. A. Rutherford, et al., Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression, Cereb. Cortex, 59 (2012), 2255–2265.
    [28] K. L. Spalding, O. Bergmann, K. Alkass, S. Bernard, M. Salehpour, H. B. Huttner, et al., Dynamics of hippocampal neurogenesis in adult humans, Cell, 153 (2013), 1219–1227. doi: 10.1016/j.cell.2013.05.002
    [29] G. F. Striedter, S. Srinivasan, E. S. Monuki, Cortical folding: when, where, how, and why?, Ann. Rev. Neurosci., 38 (2015), 291–307.
    [30] T. Sun, R. F. Hevner, Growth and folding of the mammalian cerebral cortex: from molecules to malformations, Nat. Rev. Neurosci., 15 (2014), 217–232.
    [31] T. Tallinen, J. S. Biggins, L. Mahadevan, Surface sulci in squeezed soft solids, Phys. Rev. Lett., 15 (2013), 024302.
    [32] T. Tallinen, J. Y. Chung, J. S. Biggins, L. Mahadevan, Gyrification from constrained cortical expansion, Proc. Natl. Acad. Sci., 111 (2014), 12667–12672. doi: 10.1073/pnas.1406015111
    [33] T. Tallinen, J. Y. Chung, F. Rousseau, N. Girard, J. Lefèvre, L. Mahadevan, On the growth and form of cortical convolutions, Nat. Phys., 12 (2016), 588–593. doi: 10.1038/nphys3632
    [34] R. Toro, Y. Burnod, A morphogenetic model for the development of cortical convolutions, Cereb. Cortex, 15 (2005), 1900–1913. doi: 10.1093/cercor/bhi068
    [35] R. Toro, M. Perron, B. Pike, L. Richer, S Veillette, Z. Pausova, et al., Brain size and folding of the human cerebral cortex, Cereb. Cortex, 18 (2008), 2352–2357. doi: 10.1093/cercor/bhm261
    [36] G. Xu, A. K. Knutsen, K. Dikranian, C. D. Kroenke, P. V. Bayly, L. A. Taber, Axons pull on the brain, but tension does not drive cortical folding, J. Biomech. Eng., 132 (2010), 071013-1–071013-8. doi: 10.1115/1.4001683
    [37] E. Armstrong, K.Ziles, M. Man, A. Schleicher, The ontogeny of cortical folding in the human brain, Soc. Neurosci. Abstr., 14 (1988), 1257.
    [38] E. Armstong, A. Schleicher, H. Omran, M. Curtis, K. Ziles, The ontogeny of human gyrification, Cereb. Cortex, 5 (1995), 56–63. doi: 10.1093/cercor/5.1.56
    [39] J. G. Chi, E. C. Dooling, F. H. Gilles, Gyral Development of the Human Brain, Ann. Neurol., 1 (1977), 83–93.
    [40] M. A. Hofman, Size and shape of the cerebral cortex in mammals, Brain, Behav. Evol., 27 (1985), 28–40. doi: 10.1159/000118718
    [41] M. S. van der Knaap, G. van Wezel-Meijle, P. G. Barth, Normal gyration and sulcation in preterm and term neonates: Appearance on MR images, Brain, Behav. Evol., 200 (1985), 389–396.
    [42] K. Zilles, E. Armstrong, A. Schlcicher, H. Kreuchmann, The human pattern of gyrification in the cerebral cortex, Anat. Embryol., 179 (1988), 173–179. doi: 10.1007/BF00304699
    [43] K. Zilles, A. Schleicher, C. Langemann, K. Amunts, P. Morosan, N. Palomero-Gallagher, et al., Quantitative analysis of sulci in the human cerebral cortex: Development, regional heterogencity, gender difference, asymmetry, intersubject variabilty and cortical architecture, Hum. Brain Mapp., 5 (1997), 218–221. doi: 10.1002/(SICI)1097-0193(1997)5:4<218::AID-HBM2>3.0.CO;2-6
    [44] P. Rakic, Corticogenesis in human and nonhuman primate, Cognit. Neurosci., 1994 (1994), 127–145.
    [45] P. Rakic, Critical cellular events in cortical development: Opportunities for biophysics, Periodical Biol., 100 (1998), 161–169.
    [46] A. C. Flint, A. R. Kriegstein, Mechanisms underlying neuronal migration disorders and epilepsy, J. Phys. Chem. Ref. Data, 10 (1997), 92–97.
    [47] B. Nadarajah, J. G. Parnavelas, Modes of neuronal migration in the developing cerebral cortex, Nat. Rev. Neurosci., 10 (2002), 423–432.
    [48] V. S. Caviness, D. N. Kennedy, C. Richelme, The human brain age 7–11 years: A volumetric analysis based on magnetic resonance images, Cereb. Cortex, 6 (1996), 726–736. doi: 10.1093/cercor/6.5.726
    [49] S. F. Witelson, D. L. Kigar, T. Harvey, The exceptional brain of Albert Einstein, Lancet, 353 (1999), 2149–2153. doi: 10.1016/S0140-6736(98)10327-6
    [50] S. F. Witelson, D. L. Kigar, T. Harvey, The exceptional brain of Einstein, Recherche, 326 (2000), 31–35.
    [51] E. Armstrong, K. Zilles, M. Curtis, Cortical folding, the lunate sulcus and the evolution of the human brain, J. Hum. Evol., 20 (1991), 341–348. doi: 10.1016/0047-2484(91)90014-M
    [52] E. Armstrong, K. Zilles, A. Schleicher, Cortical folding and the evolution of the human brain, J. Hum. Evol., 25 (1993), 387–392. doi: 10.1006/jhev.1993.1057
    [53] R. A. Barton, P. H. Harvey, Mosaic evolution of brain structure in mammals, Nature, 405 (2000), 1055–1058. doi: 10.1038/35016580
    [54] T. W. Deacon, Rethinking mammalian brain evolution, Am. Zool., 30 (1990), 629–705. doi: 10.1093/icb/30.3.629
    [55] D. Falk, Hominid Paleoneurology, Ann. Rev. Anthropol., 16 (1985), 13–30.
    [56] D. Falk, Apples, oranges and the lunate sulcus, Am. J. Phys. Anthropol., 67 (1985), 313–315. doi: 10.1002/ajpa.1330670403
    [57] D. Falk, Ape-like endocast of ape-man taung, Am. J. Phys. Anthropol., 80 (1989), 335–339. doi: 10.1002/ajpa.1330800307
    [58] D. Falk, C. Hildebolt, M. W. Vannier, Reassesment of the taung early hominid from a neurological perspective, J. Hum. Evol., 18 (1989), 485–492. doi: 10.1016/0047-2484(89)90077-8
    [59] D. Falk, Shifting positions on the lunate sulcus-reply, Am. J. Phys. Anthropol., 84 (1991), 89–91. doi: 10.1002/ajpa.1330840109
    [60] R. L. Holloway, The Taung endocast and the lunate sulcus: a rejection of the hypothesis of its anterior position, Am. J. Phys. Anthropol., 64 (1984), 285–287. doi: 10.1002/ajpa.1330640310
    [61] R. L. Holloway, On Falk 1989 accusations regarding Holloway study of the taung endocast a reply, Am. J. Phys. Anthropol., 84 (1991), 87–88. doi: 10.1002/ajpa.1330840108
    [62] R. L. Holloway, The failure of the gyrification index (GI) to account for volumetric reorganization in the evolution of the human brain, J. Hum. Evol., 22 (1992), 163–170. doi: 10.1016/S0047-2484(05)80005-3
    [63] T. M. Mayhew, G. L. M. Mwamengele, V. Dantzer, The gyrification of mammalian cerebral cortex: Quantitive evidence of anisomorphic surface expansion during phylogenetic and otogenetic development, J. Anat., 188 (1996), 53–58.
    [64] J. Prothero, Small brain, large brain-a quest for nature's scale up rules, J. fur Hirnforsch., 39 (1999), 335–347.
    [65] E. Bullmore, M. Brammer, I. Harvey, Cerebral hemispheric asymmetry revisited-effects of handedness, gender and schizophrenia measured by radius of gyration in magnetic resonance images, Psychol. Med., 25 (1995), 349–362. doi: 10.1017/S0033291700036254
    [66] A. Ide, C. Dolezal, M. Fernandez, Hemispheric differences in variabilty of fissural patterns in parasylvian and cingulate regions of human brains, J. Comp. Neurol., 410 (1999), 235–242. doi: 10.1002/(SICI)1096-9861(19990726)410:2<235::AID-CNE5>3.0.CO;2-G
    [67] S. F. Walker, Lateralization of functions in the vertebrate brain-a review, Brit. J. Psychol., 71 (1980), 329–367. doi: 10.1111/j.2044-8295.1980.tb01750.x
    [68] M. C. DelaCoste, D. S. Horvath, D. J. Woodward, Possible sex-differences in the developing human fetal brain, J. Clin. Exper. Neuropsychiatry, 13 (1991), 831–846. doi: 10.1080/01688639108405101
    [69] E. Armstrong, M. Curtis, D. P. Buxhocveden, C. Fregoe, K. Zilles, M. F. Casanova, et al., Cortical Gyrification in the rhesus monkey: A test of mechanical folding hypothesis, Cereb. Cortex, 2 (1992), 462–432.
    [70] T. McBride, S. E. Arnold, R. C. Gur, A comparative volumetric analysis of the prefrontal cortex in human and baboon MRI, Brain Behav. Evol., 2 (1999), 159–166.
    [71] R. E. Passingham, Rates of brain development in mammals including man, Brain Behav. Evol., 26 (1985), 167–175. doi: 10.1159/000118773
    [72] M. Mimura, T.Tsujikawa, Aggregating pattern dynamics in a chemotaxis model including growth, Phys. A, 230 (1996), 499–543. doi: 10.1016/0378-4371(96)00051-9
    [73] H. G. Othmer, A. Stevens, Aggregation, blowup and collapse: the ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044–1081. doi: 10.1137/S0036139995288976
    [74] R. Albert, H. G. Othmer, The topology of regulatory interactions predicts the expression pattern of the segment polarity genes in rosophilia melonagester, J. Biophys. Soci., 44 (2003), 79–90.
    [75] V. V. Gursky, J. Jaeger, K. N. Kozlov, J. Reinitz, A. M. Samsonov, Pattern nuclear divisions are uncoupled in Drosophilia segmentation: comparison of spatially discrete and continuous models, Phys. D, 197 (2003), 286–302.
    [76] J. Reinitz, D. H. Sharp, Mechanism of eve stripe formation, Mech. Dev., 49 (1995), 133–158. doi: 10.1016/0925-4773(94)00310-J
    [77] D. H. Sharp, J. Reinitz, Prediction of mutant expression patterns using gene circuits, Biosystems, 47 (1998), 79–90. doi: 10.1016/S0303-2647(98)00014-8
    [78] D. M. Holloway, J. Reinitz, A. Spirov, C. E. Vanario-Alonso, Sharp borders from fuzzy gradients, Trends Genet., 18 (2002), 385–386. doi: 10.1016/S0168-9525(02)02724-5
    [79] E. Mjolsness, D. H. Sharp, J. Reinitz, A Connectionist Model of Development, J. Theor. Biol., 152 (1991), 429–453. doi: 10.1016/S0022-5193(05)80391-1
    [80] G. B. Muller, S. A. Newman, Origination of Organismal Form: beyond the gene in developmental and evolutionary biology, MIT Press, 2003.
    [81] J. L. Rubenstein, P. Rakic, Genetic control of cortical development, Cereb. Cortex, 9 (1999), 521–523. doi: 10.1093/cercor/9.6.521
    [82] J. L. Rubenstein, S. Anderson, L. M. Shi, Genetic control of cortical regionalization and connectivity, Cereb. Cortex, 9 (1999), 524–532. doi: 10.1093/cercor/9.6.524
    [83] S. L. Rutherford, From genotype to phenotype: buffering mechanisms and the storage of genetic information, BioEssays, 22 (2000), 1095–1105. doi: 10.1002/1521-1878(200012)22:12<1095::AID-BIES7>3.0.CO;2-A
    [84] J. D. Murray, Mathematical biology II: spatial models and biomedical applications, Springer, 2003.
    [85] G. M. Odell, G. Oster, P. Alberch, B. Burnside, The Mechanical Basis of Morphogenesis, Dev. Biol., 85 (1981), 446–462. doi: 10.1016/0012-1606(81)90276-1
    [86] G. F. Oster, J. D. Murray, G. M. Odell, The Formation of Microvilli, Mol. Determ. Anim. Form, 1985 (1985), 365–384.
    [87] L. Y. Cheng, J. D. Murray, G. M. Odell, G. F. Oster, The Cortical Tractor, Lect. Notes Biomath., 71 (1985), 208–216.
    [88] T. Bollenbach, K. Kruse, P. Pantazis, M. Gonzalez-Gaitan, F. Julicher, Robust formation of morphogen gradients, Phys. Rev. Lett., 94 (2005), 018103-1–018103-4. doi: 10.1103/PhysRevLett.94.018103
    [89] J. L. England, J. Cardy, Morphogen gradient from a noisy source, Phys. Rev. Lett., 94 (2005), 078101-1–078101-4. doi: 10.1103/PhysRevLett.94.078101
    [90] L. W. Swanson, Brain architecture: understanding the basic plan, Oxford University Press, 2003.
    [91] S. Kim, In A Mathematical Model of Cerebral Cortical Folding Development Based on a Biomechanical Hypothesis, Conference: Society for Mathematical Biology Annual Meeting, Atlanta, 2015.
    [92] R. K. Schofield, G. W. S. Blair, The relationship between viscosity, elasticity and plastic strength of soft materials as illustrated by some mechanical properties of flour doughs I, Proc. R. Soc. London, Ser. A, 138 (1932), 707–718. doi: 10.1098/rspa.1932.0211
    [93] R. K. Schofield, G. W. S. Blair, The relationship between viscosity, elasticity and plastic strength of soft materials as illustrated by some mechanical properties of flour doughs II, Proc. R. Soc. London, Ser. A, 139 (1933), 557–566. doi: 10.1098/rspa.1933.0038
    [94] R. K. Schofield, G. W. S. Blair, The relationship between viscosity, elasticity and plastic strength of soft materials as illustrated by some mechanical properties of flour doughs III, Proc. R. Soc. London, Ser. A, 141 (1933), 72–85. doi: 10.1098/rspa.1933.0104
    [95] G. Hunt, H. Muhlhaus, B. Hobbs, Localized folding of viscoelastic layers, Geol. Rundsch., 85 (1996), 58–64. doi: 10.1007/s005310050052
    [96] H. B. Muhlhaus, H. Sakagushi, B. E. Hobbs, Evolution of three-dimensional fods for a non-Newtonian plate in a viscous medium, Proc. R. Soc. London, Ser. A, 454 (1998), 3121–3143. doi: 10.1098/rspa.1998.0294
    [97] S. M. Schmalholz, Y. Y. Podladchikov, Finite amplitude folding: transition from expotential to layer length controlled growth, Earth Planet. Sci. Lett., 179 (2000), 363–377. doi: 10.1016/S0012-821X(00)00116-3
    [98] C. B. Muratov, V. V. Osipov, Scenarios of domain pattern formation in a reaction-diffusion system, Phys. Rev. B, 54 (1996), 4860–4879. doi: 10.1103/PhysRevE.54.4860
    [99] J. H. E. Cartwright, Labyrinthine Turing pattern formation in the cerebral cortex, J. Theor. Biol., 217 (2002), 97–103. doi: 10.1006/jtbi.2002.3012
    [100] M. Ono, S. Kunik, C. D. Abernathy, Atlas of the Cerebral Sulci, Georg Thieme Verlag, 1990.
    [101] L. B. Leopold, A View of the River, Harvard University Press, 1994.
    [102] J. A. Adam, Mathematics in Nature: Modeling Patterns in the Natural World, Princeton University Press, 2003.
    [103] P. S. Dodds, D. H. Rothman, Unified View of Scaling Laws for River Networks, Phys. Rev. E, 59 (1999), 4865–4877. doi: 10.1103/PhysRevE.59.4865
    [104] H. C. Patel, Growth Analysis by Non-linear Continuum Theory, Ph.D thesis, Columbia University, 1983.
    [105] L. D. Landau, E. M. Lifshitz, Theory of Elasticity, Pergamon, 1970.
    [106] R. W. Lardner, Mathematical Theory of Dislocations and Fracture, University of Toronto Press, 1974.
    [107] E. K. Rodriquez, A. Hoger, A. D. McCulloch, Stress-Dependent Finite Growth in Soft Elastic Tissue, J. Biomech., 27 (1994), 455–467. doi: 10.1016/0021-9290(94)90021-3
    [108] S. M. Klisch, T. J. vanDyke, A. Hoger, A theory of volumetric growth for compressible elastic biological materials, Math. Mech. Solids, 6 (2001), 551–575. doi: 10.1177/108128650100600601
    [109] E. Kuhl, A. Menzel, P. Steinmann, Computational Modeling of Growth, Comput. Mech., 88 (2003), 71–88.
    [110] V. A. Lubarda, Constitutive theories based on th multiplicative decomposition of deformation gradient: Themoelasticity, elastoplasticity, and biomechanics, Am. Soc. Mech. Eng., 57 (2004), 95–108.
    [111] P. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, 1993.
    [112] P. J. Olver, Equivalence, Invariants and Symmetry, Cambridge University Press, 1995.
    [113] W. Nowinski, A. Fang, B. Nguyen, L. Jagannathan, J. Raphel, R. Raghavan, et al., Multiple brain atlas database and atlas-based neuroimaging system, Comput. Aided Surg., 2 (1997), 42–66. doi: 10.3109/10929089709149082
    [114] R. Raghavan, S. R. Ranjan, R. Viswanathan, W. Lawton, A continuum mechanical model for cortical growth, J. Theor. Biol., 187 (1997), 285–296. doi: 10.1006/jtbi.1997.0450
    [115] L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, 1982.
    [116] N. H. Ibragimov, M. H. Torrisi, A. Valenti, Preliminary group classification of the equations $v_{tt} = f(x, v_{x})v_{xx} + g(x, v_{x})$, J. Math. Phys., 32 (1991), 2988–2995. doi: 10.1063/1.529042
    [117] I. Lisle, Equivalence transformations for classes of differential equations, Ph.D thesis, The University of British Columbia, 1992.
    [118] S. Bayer, J. Altman, Atlas of Human Central Nervous System Development, in six volumes, CRC Press, 2008.
    [119] H. J. Kretschmann, G. Kammradt, E. C. Cowart, The Yakovlev collection- a unique resource for brain research and the basis for a multinational data bank, J. Hirnforsch., 23 (1982), 647–656.
    [120] P. Feinsilver, R. Schott, Differential Relations and Recurrence Formulas for Lie Groups, Stud. Appl. Math., 96 (1996), 387–406. doi: 10.1002/sapm1996964387
    [121] P. Feinsilver, Lie algebras, Representations, and Analytic Semigroups through Dual Vector Fields, Adv. Math., 2006 (2006).
    [122] P. Feinsilver, R. Schott, Vector Fields and their Duals, Adv. Math., 149 (2000), 182–192. doi: 10.1006/aima.1999.1850
    [123] P. Feinsilver, R. Schott, Volume I: Representations and Probability Theory, in Algebraic Structures and Operator Calculus: , Springer Science & Business Media, 1993.
    [124] P. Feinsilver, R. Schott, Volume II: Special Functions and Computer Science, in Algebraic Structures and Operator Calculus, Kluwer Academic Publishers, 1994.
    [125] P. Feinsilver, R. Schott, Volume III, Representations of Lie Groups, in Algebraic Structures and Operator Calculus, Kluwer Academic Publishers, 1996.
    [126] F. Alshammari, P. S. Isaac, I. Marquette, A differential operator realisation approach for constructing Casimir operators of non-semisimple Lie algebras, J. Phyics A Math. Theor., 51 (2018), 18.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2764) PDF downloads(124) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog