To investigate the roles of both coupling noises and distributed delays with strong kernels, a novel delayed stochastic two-species facultative mutualism model is established, in where the strong kernels indicate that the maximum influence on the growth rate response at some time is due to population densities at the previous time, and the saturation effect is also incorporated because the facultative capacity of each species is finite and their interspecific mutualism should be upper bounded in real life. We first transfer the two-species stochastic model with strong kernels into an equivalent six-dimensional model through a linear chain technique. Later, sufficient conditions for the extinction exponentially, persistence in the mean, permanent in time average and stationary distribution are respectively obtained. Finally, numerical simulations are supplied to support our theoretical results. Our analytical results show that the coupling noise intensities play an important role in the long-time behaviors while the strong kernels are independent of the above asymptotic properties.
Citation: Ke Qi, Zhijun Liu, Lianwen Wang, Qinglong Wang. Survival and stationary distribution of a stochastic facultative mutualism model with distributed delays and strong kernels[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 3160-3179. doi: 10.3934/mbe.2021157
To investigate the roles of both coupling noises and distributed delays with strong kernels, a novel delayed stochastic two-species facultative mutualism model is established, in where the strong kernels indicate that the maximum influence on the growth rate response at some time is due to population densities at the previous time, and the saturation effect is also incorporated because the facultative capacity of each species is finite and their interspecific mutualism should be upper bounded in real life. We first transfer the two-species stochastic model with strong kernels into an equivalent six-dimensional model through a linear chain technique. Later, sufficient conditions for the extinction exponentially, persistence in the mean, permanent in time average and stationary distribution are respectively obtained. Finally, numerical simulations are supplied to support our theoretical results. Our analytical results show that the coupling noise intensities play an important role in the long-time behaviors while the strong kernels are independent of the above asymptotic properties.
[1] | E. P. Odum, Fundamental of Ecology, 3rd edition, Saunders, Philadelphia, 1971. |
[2] | D. H. Janzen, Coevolution of mutualism between ants and acacias in Central America, Evolution, 20 (1966), 249-275. doi: 10.1111/j.1558-5646.1966.tb03364.x |
[3] | K. G. Poter, Enhancement of algal growth and productivity by grazing zooplankton, Science, 192 (1976), 1332-1334. doi: 10.1126/science.192.4246.1332 |
[4] | B. S. Goh, Stability in models of mutualism, Amer. Natur., 113 (1979), 261-275. doi: 10.1086/283384 |
[5] | X. Z. He, K. Gopalsamy, Persistence, attractivity, and delay in facultative mutualism, J. Math. Anal. Appl., 215 (1997), 154-173. doi: 10.1006/jmaa.1997.5632 |
[6] | H. L. Smith, On the asymptotic behavior of a class of deterministic models of cooperating species, SIAM J. Appl. Math., 46 (1986), 368-375. doi: 10.1137/0146025 |
[7] | D. Mukherjee, Permanence and global attractivity for facultative mutualism system with delay, Math. Methods Appl. Sci., 26 (2003), 1-9. doi: 10.1002/mma.275 |
[8] | A. A. S. Zaghrout, Stability and persistence of facultative mutualism with populations interacting in a food chain, Appl. Math. Comput., 45 (1991), 1-15. |
[9] | R. Kumar, H. I. Freedman, A mathematical model of facultative mutualism with population interacting in a food chain, Math. Biosci., 97 (1989), 235-261. doi: 10.1016/0025-5564(89)90006-0 |
[10] | M. X. Liao, C. J. Xu, X. H. Tang, Stability and Hopf bifurcation for a competition and cooperation model of two enterprises with delay, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3845-3856. doi: 10.1016/j.cnsns.2014.02.031 |
[11] | D. Maxin, P. Georgescu, L. Sega, L. Berec, Global stability of the coexistence equilibrium for a general class of models of facultative mutualism, J. Biol. Dyn., 11 (2017), 339-364. doi: 10.1080/17513758.2017.1343871 |
[12] | P. Georgescu, H. Zhang, D. Martin, The global stability of coexisting equilibria for three models of mutualism, Math. Biosci. Eng., 13 (2016), 101-118. doi: 10.3934/mbe.2016.13.101 |
[13] | G. C. Lu, Z. Y. Lu, X. Z. Lian, Delay effect on the permanence for Lotka-Volterra cooperative systems, Nonlinear Anal. Real World Appl., 11 (2010), 2810-2816. doi: 10.1016/j.nonrwa.2009.10.005 |
[14] | Y. Nakata, Y. Muroya, Permanence for nonautonomous Lotka-Volterra cooperative systems with delays, Nonlinear Anal. Real World Appl., 11 (2010), 528-534. doi: 10.1016/j.nonrwa.2009.01.002 |
[15] | C. Y. Ji, D. Q. Jiang, Persistence and non-persistence of a mutualism system with stochastic perturbation, Discrete Contin. Dyn. Syst., 32 (2012), 867-889. doi: 10.3934/dcds.2012.32.867 |
[16] | M. Li, H. J. Gao, C. F. Sun, Y. Z. Gong, Analysis of a mutualism model with stochastic perturbations, Int. J. Biomath., 8 (2015), 1550072. doi: 10.1142/S1793524515500722 |
[17] | Q. Liu, Q. M. Chen, Y. Y. Hu, Analysis of a stochastic mutualism model, Commun. Nonlinear Sci. Numer. Simul., 29 (2015), 188-197. doi: 10.1016/j.cnsns.2015.05.010 |
[18] | G. Y. Lv, B. B. Zhang, Permanence and extinction of stochastic regime-switching mutualism model, Int. J. Biomath., 13 (2020), 2050028. doi: 10.1142/S179352452050028X |
[19] | W. X. Ning, Z. J. Liu, L. W. Wang, R. H. Tan, A stochastic mutualism model with saturation effect and impulsive toxicant input in a polluted environment, J. Appl. Math. Comput., 65 (2021), 177-197. doi: 10.1007/s12190-020-01387-8 |
[20] | Y. H. Yang, S. D. Huang, Permanence and almost periodic solution of two-species delayed Lotka-Volterra cooperative systems with impulsive perturbations, Internat. J. Control, 89 (2016), 2492-2506. doi: 10.1080/00207179.2016.1168526 |
[21] | D. Ye, M. Fan, Periodicity in mutualism systems with impulse, Taiwanese J. Math., 10 (2006), 723-737. |
[22] | Z. J. Liu, R. H. Tan, P. Y. Chen, L. S. Chen, On the stable periodic solutions of a delayed two-species of facultative mutualism model, Appl. Math. Comput., 196 (2008), 105-117. |
[23] | Z. J. Liu, J. H. Wu, R. H. Tan, Y. P. Chen, Modeling and analysis of a periodic delayed two-species model of facultative mutualism, Appl. Math. Comput., 217 (2010), 893-903. |
[24] | C. J. Xu, P. L. Li, Almost periodic solutions for a competition and cooperative model of two enterprises with time-varying delays and feedback controls, J. Appl. Math. Comput., 53 (2017), 397-411. doi: 10.1007/s12190-015-0974-7 |
[25] | M. Liu, C. Z. Bai, Optimal harvesting of a stochastic mutualism model with regime-switching, Appl. Math. Comput., 373 (2020), 125040. |
[26] | M. Liu, C. Z. Bai, Optimal harvesting of a stochastic mutualism model with Lévy jumps, Appl. Math. Comput., 276 (2016), 301-309. |
[27] | G. D. Liu, H. K. Qi, Z. B. Chang, X. Z. Meng, Asymptotic stability of a stochastic May mutualism system, Comput. Math. Appl., 79 (2020), 735-745. doi: 10.1016/j.camwa.2019.07.022 |
[28] | X. H. Zhang, D. Q. Jiang, A. Alsaedi, T. Hayat, Periodic solutions and stationary distribution of mutualism models in random environments, Phys. A, 460 (2016), 270-282. doi: 10.1016/j.physa.2016.05.015 |
[29] | K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic, Dordrecht, 1992. |
[30] | V. Volterra, Remarques sur la note de M.Régnier et Mlle. Lambin (Étude d'un cas d'antagonisme microbien), C. R. Acad. Sci., 199 (1934), 1684-1686. |
[31] | J. M. Cushing, Integrodifferential equations and delay models in population dynamics, in Lecture Notes in Biomathematics, Springer-Verlag, Berlin, 1977. |
[32] | N. Macdonald, Time lags in biological models, in Lecture Notes in Biomathematics, Springer-Verlag, Berlin, 1978. |
[33] | C. Lu, Q. Ma, Analysis of a stochastic Lotka-Volterra competitive model with infinite delay and impulsive perturbations, Taiwanese J. Math., 21 (2017), 1413-1436. |
[34] | J. Hu, Z. J. Liu, L. W. Wang, R. H. Tan, Extinction and stationary distribution of a competition system with distributed delays and higher order coupled noises, Math. Biosci. Eng., 17 (2020), 3240-3251. doi: 10.3934/mbe.2020184 |
[35] | N. Wang, M. A. Han, Relaxation oscillations in predator-prey model with distributed delay, Comput. Appl. Math., 37 (2018), 475-484. doi: 10.1007/s40314-016-0353-5 |
[36] | W. J. Zuo, D. Q. Jiang, X. G. Sun, T. Hayat, A. Alsaedi, Long-time behaviors of a stochastic cooperative Lotka-Volterra system with distributed delay, Phys. A, 506 (2018), 542-559. doi: 10.1016/j.physa.2018.03.071 |
[37] | X. G. Sun, W. J. Zuo, D. Q. Jiang, T. Hayat, Unique stationary distribution and ergodicity of a stochastic logistic model with distributed delay, Phys. A, 512 (2018), 864-881. doi: 10.1016/j.physa.2018.08.048 |
[38] | Q. Liu, D. Q. Jiang, Stationary distribution and extinction of a stochastic predator-prey model with distributed delay, Appl. Math. Lett., 78 (2018), 79-87. doi: 10.1016/j.aml.2017.11.008 |
[39] | Q. Liu, D. Q. Jiang, T. Hayat, A. Alsaedi, Dynamical behavior of stochastic predator-prey models with distributed delay and general functional response, Stoch. Anal. Appl., 38 (2020), 403-426. doi: 10.1080/07362994.2019.1695628 |
[40] | W. X. Ning, Z. J. Liu, L. W. Wang, R. H. Tan, Analysis of a stochastic competitive model with saturation effect and distributed delay, Methodol. Comput. Appl. Probab., 2020. |
[41] | S. G. Ruan, Delay differential equations in single species dynamics, in Delay Differential Equations and Applications (eds. Arino, O., et al.), Springer, New York, 2006. |
[42] | R. M. Nisbet, W. S. C. Gurney, Modelling Fluctuating Populations, Wiley, New York, 1982. |
[43] | R. M. May, Stability and Complexity in Model Ecosystem, Princeton University Press, Princeton, NJ, 2001. |
[44] | J. Hu, Z. J. Liu, Incorporating coupling noises into a nonlinear competitive system with saturation effect, Int. J. Biomath., 13 (2020), 2050012. doi: 10.1142/S1793524520500126 |
[45] | Q. Li, Z. J. Liu, S. L. Yuan, Cross-diffusion induced Turing instability for a competition model with saturation effect, Appl. Math. Comput., 347 (2019), 64-77. |
[46] | A. Bahar, X. R. Mao, Stochastic delay Lotka-Volterra model, J. Math. Anal. App., 292 (2004), 364-380. doi: 10.1016/j.jmaa.2003.12.004 |
[47] | X. R. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, 2007. |
[48] | M. Liu, K. Wang, Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, Bull. Math. Biol., 73 (2011), 1969-2012. doi: 10.1007/s11538-010-9569-5 |
[49] | R. Z. Khas'minskii, Stochastic Stability of Differential Equations, Sijthoff Noordhoff, Alphen aan den Rijn, Netherlands, 1980. |
[50] | D. Y. Xu, Y. M. Huang, Z. G. Yang, Existence theorems for periodic Markov process and stochastic functional differential equations, Discrete Contin. Dyn. Syst., 24 (2009), 1005-1023. doi: 10.3934/dcds.2009.24.1005 |
[51] | I. Barhalat, Systems d'equations differential d'oscillations nonlinearies, Rev. Roum. Math. Pures Appl., 4 (1959), 267-270. |