Multilevel thresholding has important research value in image segmentation and can effectively solve region analysis problems of complex images. In this paper, Otsu and Kapur's entropy are adopted among thresholding segmentation methods. They are used as the objective functions. When the number of threshold increases, the time complexity increases exponentially. In order to overcome this drawback, a modified ant lion optimizer algorithm based on opposition-based learning (MALO) is proposed to determine the optimum threshold values by the maximization of the objective functions. By introducing the opposition-based learning strategy, the search accuracy and convergence performance are increased. In addition to IEEE CEC 2017 benchmark functions validation, 11 state-of-the-art algorithms are selected for comparison. A series of experiments are conducted to evaluate the segmentation performance of the algorithm. The evaluation metrics include: fitness value, peak signal-to-noise ratio, structural similarity index, feature similarity index, and computational time. The experimental data are analyzed and discussed in details. The experimental results significantly demonstrate that the proposed method is superior over others, which can be considered as a powerful and efficient thresholding technique.
Citation: Shikai Wang, Kangjian Sun, Wanying Zhang, Heming Jia. Multilevel thresholding using a modified ant lion optimizer with opposition-based learning for color image segmentation[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 3092-3143. doi: 10.3934/mbe.2021155
Multilevel thresholding has important research value in image segmentation and can effectively solve region analysis problems of complex images. In this paper, Otsu and Kapur's entropy are adopted among thresholding segmentation methods. They are used as the objective functions. When the number of threshold increases, the time complexity increases exponentially. In order to overcome this drawback, a modified ant lion optimizer algorithm based on opposition-based learning (MALO) is proposed to determine the optimum threshold values by the maximization of the objective functions. By introducing the opposition-based learning strategy, the search accuracy and convergence performance are increased. In addition to IEEE CEC 2017 benchmark functions validation, 11 state-of-the-art algorithms are selected for comparison. A series of experiments are conducted to evaluate the segmentation performance of the algorithm. The evaluation metrics include: fitness value, peak signal-to-noise ratio, structural similarity index, feature similarity index, and computational time. The experimental data are analyzed and discussed in details. The experimental results significantly demonstrate that the proposed method is superior over others, which can be considered as a powerful and efficient thresholding technique.
[1] | N. M. Zaitoun, M. J. Aqel, Survey on Image Segmentation Techniques, Procedia Comput. Sci., 65 (2015), 797-806. doi: 10.1016/j.procs.2015.09.027 |
[2] | M. Sridevi, C. Mala, A Survey on Monochrome Image Segmentation Methods, Procedia Technol., 6 (2012), 548-555. doi: 10.1016/j.protcy.2012.10.066 |
[3] | A. K. M. Khairuzzaman, S. Chaudhury, Multilevel thresholding using grey wolf optimizer for image segmentation, Expert Syst. Appl., 86 (2017), 64-76. doi: 10.1016/j.eswa.2017.04.029 |
[4] | J. Tang, Y. Wang, C. Huang, H. Liu, N. Al-Nabhan, Image edge detection based on singular value feature vector and gradient operator, Math. Biosci. Eng., 17 (2020), 3721-3735. doi: 10.3934/mbe.2020209 |
[5] | X. Song, Y. Wang, Q. Feng, Q. Wang, Improved graph cut model with features of superpixels and neighborhood patches for myocardium segmentation from ultrasound image, Infinite Study, 2019. |
[6] | X. Lu, Z. You, M. Sun, J. Wu, Z. Zhang, Breast cancer mitotic cell detection using cascade convolutional neural network with U-Net, Math. Biosci. Eng., 18 (2021), 673-695. doi: 10.3934/mbe.2021036 |
[7] | H. Jia, K. Sun, W. Song, X. Peng, C. Lang, Y. Li, Multi-Strategy Emperor Penguin Optimizer for RGB Histogram-Based Color Satellite Image Segmentation Using Masi Entropy, IEEE Access, 7 (2019), 134448-134474. doi: 10.1109/ACCESS.2019.2942064 |
[8] | S. Wang, H. Jia, X. Peng, Modified salp swarm algorithm based multilevel thresholding for color image segmentation, Math. Biosci. Eng., 17 (2019), 700-724. |
[9] | A. Dirami, K. Hammouche, M. Diaf, P. Siarry, Fast multilevel thresholding for image segmentation through a multiphase level set method, Signal Process., 93 (2013), 139-153. doi: 10.1016/j.sigpro.2012.07.010 |
[10] | E. Hamuda, M. Glavin, E. Jones, A survey of image processing techniques for plant extraction and segmentation in the field, Comput. Electron. Agric., 125 (2016), 184-199. doi: 10.1016/j.compag.2016.04.024 |
[11] | S. Kotte, R. K. Pullakura, S. K. Injeti, Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind driven optimization, Measurement, 130 (2018), 340-361. doi: 10.1016/j.measurement.2018.08.007 |
[12] | N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern., 9 (1979), 62-66. doi: 10.1109/TSMC.1979.4310076 |
[13] | J. N. Kapur, P. Sahoo, A. K. C. Wong, A new method for gray-level picture thresholding using the entropy of the histogram, Comput. Vis. Graph Image Process., 29 (1985), 273-285. doi: 10.1016/0734-189X(85)90125-2 |
[14] | A. K.Bhandari, V. K. Singh, A. Kumar, G. K. Singh, Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy, Expert Syst. Appl., 41 (2014), 3538-3560. doi: 10.1016/j.eswa.2013.10.059 |
[15] | M. A. E. Aziz, A. A. Ewees, A. E. Hassanien, Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation, Expert Syst. Appl., 83 (2017), 242-256. doi: 10.1016/j.eswa.2017.04.023 |
[16] | K. P. Baby Resma, M. S. Nair, Multilevel thresholding for image segmentation using Krill Herd Optimization algorithm, J. King Saud Univ. Comput. Inf. Sci., (2018), forthcoming. |
[17] | A. Ibrahim, A. Ahmed, S. Hussein, A. E. Hassanien, Fish image segmentation using Salp Swarm Algorithm, in The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018), Springer, (2018), 42-51. |
[18] | S. Ouadfel, A. Taleb-Ahmed, Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study, Expert Syst. Appl., 55 (2016), 566-584. doi: 10.1016/j.eswa.2016.02.024 |
[19] | M. Díaz-Cortés, N. Ortega-Sánchez, S. Hinojosa, D. Oliva, E. Cuevas, R. Rojas, et al., A multi-level thresholding method for breast thermograms analysis using Dragonfly algorithm, Infrared Phys. Technol., 93 (2018), 346-361. doi: 10.1016/j.infrared.2018.08.007 |
[20] | S. C. Satapathy, N. Sri Madhava Raja, V. Rajinikanth, A. S. Ashour, N. Dey, Multi-level image thresholding using Otsu and chaotic bat algorithm, Neural Comput. Appl., 29 (2018), 1285-1307. doi: 10.1007/s00521-016-2645-5 |
[21] | M. Salvi, F. Molinari, Multi-tissue and multi-scale approach for nuclei segmentation in H & E stained images, BioMed. Eng. OnLine., 17 (2018), 89. doi: 10.1186/s12938-018-0518-0 |
[22] | Y. Feng, H. Zhao, X. Li, X. Zhang, H. Li, A multi-scale 3D Otsu thresholding algorithm for medical image segmentation, Digital Signal Process., 60 (2017), 186-199. doi: 10.1016/j.dsp.2016.08.003 |
[23] | D. Zhao, L. Liu, F. Yu, A. A. Heidari, M. Wang, G. Liang, et al., Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy, Knowl. Based Syst., 216 (2021), 106510. doi: 10.1016/j.knosys.2020.106510 |
[24] | D. Zhao, L. Liu, F. Yu, A. A. Heidari, M. Wang, D. Oliva, et al., Ant colony optimization with horizontal and vertical crossover search: Fundamental visions for multi-threshold image segmentation, Expert Syst. Appl., 167 (2021), 114122. doi: 10.1016/j.eswa.2020.114122 |
[25] | L. He, S. Huang, An efficient krill herd algorithm for color image multilevel thresholding segmentation problem, Appl. Soft Comput., 89 (2020), 106063. doi: 10.1016/j.asoc.2020.106063 |
[26] | I. Hilali-Jaghdam, A. B. Ishak, S. Abdel-Khalek, A. Jamal, Quantum and classical genetic algorithms for multilevel segmentation of medical images: A comparative study, Comput. Commun., 162 (2020), 83-93. doi: 10.1016/j.comcom.2020.08.010 |
[27] | B. Wu, J. Zhou, X. Ji, Y. Yin, X. Shen, An ameliorated teaching-learning-based optimization algorithm based study of image segmentation for multilevel thresholding using Kapur's entropy and Otsu's between class variance, Inf. Sci., 533 (2020), 72-107. doi: 10.1016/j.ins.2020.05.033 |
[28] | S. Mirjalili, The Ant Lion Optimizer, Adv. Eng. Software, 83 (2015), 80-98. doi: 10.1016/j.advengsoft.2015.01.010 |
[29] | M. J. Hadidian-Moghaddam, S. Arabi-Nowdeh, M. Bigdeli, D. Azizian, A multi-objective optimal sizing and siting of distributed generation using ant lion optimization technique, Ain Shams Eng. J., 9 (2018), 2101-2109. doi: 10.1016/j.asej.2017.03.001 |
[30] | M. Raju, L. C. Saikia, N. Sinha, Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller, Int. J. Electr. Power Energy Syst., 80 (2016), 52-63. doi: 10.1016/j.ijepes.2016.01.037 |
[31] | P. Saxena, A. Kothari, Ant Lion Optimization algorithm to control side lobe level and null depths in linear antenna arrays, Int. J. Electron. Commun., 70 (2016), 1339-1349. doi: 10.1016/j.aeue.2016.07.008 |
[32] | E. Umamaheswari, S. Ganesan, M. Abirami, S. Subramanian, Cost Effective Integrated Maintenance Scheduling in Power Systems using Ant Lion Optimizer, Energy Procedia, 117 (2017), 501-508. doi: 10.1016/j.egypro.2017.05.176 |
[33] | P. D. P. Reddy, V. C. V. Reddy, T. G. Manohar, Ant Lion optimization algorithm for optimal sizing of renewable energy resources for loss reduction in distribution systems, J. Electr. Syst. Inf. Technol., 5 (2018), 663-680. doi: 10.1016/j.jesit.2017.06.001 |
[34] | D. Oliva, S. Hinojosa, M. A. Elaziz, N. Ortega-Sánchez, Context based image segmentation using antlion optimization and sine cosine algorithm, Multimedia Tools Appl., 77 (2018), 25761-25797. doi: 10.1007/s11042-018-5815-x |
[35] | C. Jin, Z. Ye, L. Yan, Y. Cao, A. Zhang, L. Ma, et al., Image Segmentation Using Fuzzy C-means Optimized by Ant Lion Optimization, in 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), IEEE, (2019), 388-393. |
[36] | X. Yue, H. Zhang, A Novel Industrial Image Contrast Enhancement Technique Based on an Improved Ant Lion Optimizer, Arab J. Sci. Eng., 46 (2021), 3235-3246. doi: 10.1007/s13369-020-05148-4 |
[37] | Z. Wu, D. Yu, X. Kang, Parameter identification of photovoltaic cell model based on improved ant lion optimizer, Energy Convers. Manage., 151 (2017), 107-115. doi: 10.1016/j.enconman.2017.08.088 |
[38] | K. R. Subhashini, J. K. Satapathy, Development of an Enhanced Ant Lion Optimization Algorithm and its Application in Antenna Array Synthesis, Appl. Soft Comput., 59 (2017), 153-173. doi: 10.1016/j.asoc.2017.05.007 |
[39] | S. K. Majhi, S. Biswal, Optimal cluster analysis using hybrid K-Means and Ant Lion Optimizer, Karbala Int. J. Mod. Sci., 4 (2018), 347-360. doi: 10.1016/j.kijoms.2018.09.001 |
[40] | R. Sarkhel, N. Das, A. K. Saha, M. Nasipuri, An improved Harmony Search Algorithm embedded with a novel piecewise opposition based learning algorithm, Eng. Appl. Artif. Intell., 67 (2018), 317-330. doi: 10.1016/j.engappai.2017.09.020 |
[41] | A. A. Ewees, M. A. Elaziz, E. H. Houssein, Improved grasshopper optimization algorithm using opposition-based learning, Expert Syst. Appl., 112 (2018), 156-172. doi: 10.1016/j.eswa.2018.06.023 |
[42] | M. A. Ahandani, Opposition-based learning in the shuffled bidirectional differential evolution algorithm, Swarm Evol. Comput., 26 (2016), 64-85. doi: 10.1016/j.swevo.2015.08.002 |
[43] | N. H. Awad, M. Z. Ali, P. N. Suganthan, Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems, in 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, (2017), 372-379. |
[44] | R. Roy, S. Laha, Optimization of Stego image retaining secret information using genetic algorithm with 8-connected PSNR, Procedia Comput. Sci., 60 (2015), 468-477. doi: 10.1016/j.procs.2015.08.168 |
[45] | A. Tanchenko, Visual-PSNR measure of image quality, J. Visual Commun. Image Represent., 25 (2014), 874-878. doi: 10.1016/j.jvcir.2014.01.008 |
[46] | Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612. doi: 10.1109/TIP.2003.819861 |
[47] | V. Bruni, D. Vitulano, An entropy based approach for SSIM speed up, Signal Process., 135 (2017), 198-209. doi: 10.1016/j.sigpro.2017.01.007 |
[48] | C. Li, A. C. Bovik, Content-partitioned structural similarity index for image quality assessment, Signal Process. Image Commun., 25 (2010), 517-526. doi: 10.1016/j.image.2010.03.004 |
[49] | L. Zhang, L. Zhang, X. Mou, D. Zhang, FSIM: A feature similarity index for image quality assessment, IEEE Trans. Image Process., 20 (2011), 2378-2386. doi: 10.1109/TIP.2011.2109730 |
[50] | J. John, M. S. Nair, P. R. A. Kumar, M. Wilscy, A novel approach for detection and delineation of cell nuclei using feature similarity index measure, Biocybern. Biomed. Eng., 36 (2016), 76-88. doi: 10.1016/j.bbe.2015.11.002 |
[51] | S. K. Dinkar, K. Deep, Opposition based Laplacian Ant Lion Optimizer, J. Comput. Sci., 23 (2017), 71-90. doi: 10.1016/j.jocs.2017.10.007 |
[52] | M. Wang, X. Zhao, A. A. Heidari, H. Chen, Evaluation of constraint in photovoltaic models by exploiting an enhanced ant lion optimizer, Sol. Energy, 211 (2020), 503-521. doi: 10.1016/j.solener.2020.09.080 |
[53] | The Berkeley Segmentation Dataset and Benchmark. Available from: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/. |
[54] | H. Jia, X. Peng, W. Song, C. Lang, Z. Xing, K. Sun, Multiverse Optimization Algorithm Based on Lévy Flight Improvement for Multithreshold Color Image Segmentation, IEEE Access, 7 (2019), 32805-32844. doi: 10.1109/ACCESS.2019.2903345 |
[55] | A. K. M. Khairuzzaman, S. Chaudhury, Masi entropy based multilevel thresholding for image segmentation, Multimed. Tools Appl., 78 (2019), 33573-33591. doi: 10.1007/s11042-019-08117-8 |
[56] | A. K. Bhandari, A. Kumar, G. K. Singh, Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur's, Otsu and Tsallis functions, Expert Syst. Appl., 42 (2015), 1573-1601. doi: 10.1016/j.eswa.2014.09.049 |
[57] | S. Kotte, P. R. Kumar, S. K. Injeti, An efficient approach for optimal multilevel thresholding selection for gray scale images based on improved differential search algorithm, Ain Shams Eng. J., 9 (2018), 1043-1067. doi: 10.1016/j.asej.2016.06.007 |
[58] | V. K. Bohat, K. V. Arya, A new heuristic for multilevel thresholding of images, Expert Syst. Appl., 117 (2019), 176-203. doi: 10.1016/j.eswa.2018.08.045 |
[59] | A. K. Bhandari, A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation, Neural Comput. Appl., 32 (2020), 4583-4613. doi: 10.1007/s00521-018-3771-z |
[60] | D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67-82. doi: 10.1109/4235.585893 |