Research article Special Issues

Multilevel thresholding using a modified ant lion optimizer with opposition-based learning for color image segmentation

  • Multilevel thresholding has important research value in image segmentation and can effectively solve region analysis problems of complex images. In this paper, Otsu and Kapur's entropy are adopted among thresholding segmentation methods. They are used as the objective functions. When the number of threshold increases, the time complexity increases exponentially. In order to overcome this drawback, a modified ant lion optimizer algorithm based on opposition-based learning (MALO) is proposed to determine the optimum threshold values by the maximization of the objective functions. By introducing the opposition-based learning strategy, the search accuracy and convergence performance are increased. In addition to IEEE CEC 2017 benchmark functions validation, 11 state-of-the-art algorithms are selected for comparison. A series of experiments are conducted to evaluate the segmentation performance of the algorithm. The evaluation metrics include: fitness value, peak signal-to-noise ratio, structural similarity index, feature similarity index, and computational time. The experimental data are analyzed and discussed in details. The experimental results significantly demonstrate that the proposed method is superior over others, which can be considered as a powerful and efficient thresholding technique.

    Citation: Shikai Wang, Kangjian Sun, Wanying Zhang, Heming Jia. Multilevel thresholding using a modified ant lion optimizer with opposition-based learning for color image segmentation[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 3092-3143. doi: 10.3934/mbe.2021155

    Related Papers:

    [1] Xiaoxu Peng, Heming Jia, Chunbo Lang . Modified dragonfly algorithm based multilevel thresholding method for color images segmentation. Mathematical Biosciences and Engineering, 2019, 16(6): 6467-6511. doi: 10.3934/mbe.2019324
    [2] Wenqi Ji, Xiaoguang He . Kapur's entropy for multilevel thresholding image segmentation based on moth-flame optimization. Mathematical Biosciences and Engineering, 2021, 18(6): 7110-7142. doi: 10.3934/mbe.2021353
    [3] Shikai Wang, Heming Jia, Xiaoxu Peng . Modified salp swarm algorithm based multilevel thresholding for color image segmentation. Mathematical Biosciences and Engineering, 2020, 17(1): 700-724. doi: 10.3934/mbe.2020036
    [4] Nilkanth Mukund Deshpande, Shilpa Gite, Biswajeet Pradhan, Ketan Kotecha, Abdullah Alamri . Improved Otsu and Kapur approach for white blood cells segmentation based on LebTLBO optimization for the detection of Leukemia. Mathematical Biosciences and Engineering, 2022, 19(2): 1970-2001. doi: 10.3934/mbe.2022093
    [5] Shenghan Li, Linlin Ye . Multi-level thresholding image segmentation for rubber tree secant using improved Otsu's method and snake optimizer. Mathematical Biosciences and Engineering, 2023, 20(6): 9645-9669. doi: 10.3934/mbe.2023423
    [6] Hong Qi, Guanglei Zhang, Heming Jia, Zhikai Xing . A hybrid equilibrium optimizer algorithm for multi-level image segmentation. Mathematical Biosciences and Engineering, 2021, 18(4): 4648-4678. doi: 10.3934/mbe.2021236
    [7] Yating Fang, Baojiang Zhong . Cell segmentation in fluorescence microscopy images based on multi-scale histogram thresholding. Mathematical Biosciences and Engineering, 2023, 20(9): 16259-16278. doi: 10.3934/mbe.2023726
    [8] Yu Li, Meilong Zhu, Guangmin Sun, Jiayang Chen, Xiaorong Zhu, Jinkui Yang . Weakly supervised training for eye fundus lesion segmentation in patients with diabetic retinopathy. Mathematical Biosciences and Engineering, 2022, 19(5): 5293-5311. doi: 10.3934/mbe.2022248
    [9] Jiande Zhang, Chenrong Huang, Ying Huo, Zhan Shi, Tinghuai Ma . Multi-population cooperative evolution-based image segmentation algorithm for complex helical surface image. Mathematical Biosciences and Engineering, 2020, 17(6): 7544-7561. doi: 10.3934/mbe.2020385
    [10] Ran Zhou, Yanghan Ou, Xiaoyue Fang, M. Reza Azarpazhooh, Haitao Gan, Zhiwei Ye, J. David Spence, Xiangyang Xu, Aaron Fenster . Ultrasound carotid plaque segmentation via image reconstruction-based self-supervised learning with limited training labels. Mathematical Biosciences and Engineering, 2023, 20(2): 1617-1636. doi: 10.3934/mbe.2023074
  • Multilevel thresholding has important research value in image segmentation and can effectively solve region analysis problems of complex images. In this paper, Otsu and Kapur's entropy are adopted among thresholding segmentation methods. They are used as the objective functions. When the number of threshold increases, the time complexity increases exponentially. In order to overcome this drawback, a modified ant lion optimizer algorithm based on opposition-based learning (MALO) is proposed to determine the optimum threshold values by the maximization of the objective functions. By introducing the opposition-based learning strategy, the search accuracy and convergence performance are increased. In addition to IEEE CEC 2017 benchmark functions validation, 11 state-of-the-art algorithms are selected for comparison. A series of experiments are conducted to evaluate the segmentation performance of the algorithm. The evaluation metrics include: fitness value, peak signal-to-noise ratio, structural similarity index, feature similarity index, and computational time. The experimental data are analyzed and discussed in details. The experimental results significantly demonstrate that the proposed method is superior over others, which can be considered as a powerful and efficient thresholding technique.



    With the emergence of computer technology, image processing has been widely used in many fields. Image segmentation is one of the classical topics in image processing [1]. It divides the original image into multiple sub-regions according to intensity, color, texture, and other attributes of the image [2]. Image segmentation is often the preprocessing phase of higher-class processing such as: image analysis, object recognition, and computer vision. Consequently, the performance of higher-class processing system depends on the accuracy of the segmentation technique adopted [3]. Researchers have proposed a range of segmentations, including edge detection, histogram based thresholding, region, feature clustering, and neural networks [4,5,6]. Histogram based thresholding is a simple and the most commonly used image segmentation method [7,8]. Thresholding methods can be divided into two categories: bi-level thresholding and multi-level thresholding. Bi-level thresholding means that the target and background can be clearly distinguished by a single threshold value. Multi-level thresholding denotes that the given image can be segmented into various classes by multiple threshold values [9,10,11].

    Among available image thresholding techniques, Otsu and Kapur's entropy are two state-of-the-art thresholding methods [12,13,14]. Otsu and Kapur's entropy find the optimal threshold values according to some preset criteria. Otsu maximizes the variance of the histogram classes, and Kapur's entropy maximizes the entropy of the histogram. These thresholding techniques mentioned above can be easily extended to multilevel thresholding segmentation. However, the exhaustive search makes it inefficient to find the optimal threshold values, and the time complexity increases exponentially when the number of threshold increases. In order to overcome the above drawback, swarm intelligence (SI) algorithms are extensively used in multilevel thresholding problems [15,16]. Ibrahim et al. proposed the fish images segmentation model based on salp swarm algorithm, in which Otsu method is used to determine the threshold and extract fish from the original image [17]. Ouadfel et al. studied two metaheuristic algorithms: flower pollination algorithm and social spiders optimization. Then the performance of multilevel thresholding methods was evaluated comprehensively [18]. Infrared image is of great value in medical research. Díaz-Cortés applied dragonfly algorithm in medical image segmentation technology [19]. Satapathy et al. used Otsu method and a novel chaotic bat algorithm (CBA) to address bi-level and multi-level image thresholding problem. The chaotic map was considered to update the position of bat during the optimization search. The proposed CBA offered superior image quality measure values [20]. Salvi et al. presented an adaptive method for nuclei segmentation in H & E stained images, named multiscale adaptive nuclei analysis (MANA). High segmentation performances were obtained for different organ images [21]. Feng et al. invented a thresholding technique of 3D Otsu based on dimension decomposition rule. The test results on medical images showed that the proposed technique reduced time complexity without the loss of segmentation quality [22]. Zhao et al. proposed an improved ant colony optimizer (RCACO) using a random spare strategy and chaotic intensification strategy. The convergence speed and the convergence accuracy were main gains. Furthermore, it was also an excellent multilevel image segmentation algorithm [23]. In [24], the horizontal crossover search (HCS) and the vertical crossover search (VCS) were introduced into the ant colony optimizer for the first time. The proposed algorithm was named CCACO. The newly proposed algorithm was evaluated in the field of function optimization and image segmentation [24]. He et al. introduced the efficient krill herd (EKH) algorithm into image segmentation. The experimental results showed that the presented EKH algorithm was superior to the other algorithms [25]. Hilali-Jaghdam et al. proposed a method based on the classical and quantum genetic algorithms to solve the medical images segmentation. The Genetic Algorithm (GA) used a binary coding while the Quantum Genetic Algorithm (QGA) used the qubit encoding of individuals [26]. Wu et al. proposed an improved teaching-learning-based optimization algorithm (DI-TLBO) and successfully applied it in casting X-ray image segmentation for multi-level threshold [27].

    Mirjalili proposed a novel nature-inspired algorithm called ant lion optimizer (ALO) in 2015 [28]. Obviously, ALO algorithm simulates the intelligent behavior of antlions in nature, including building traps, catching preys, and rebuilding traps. In 2018, Hadidian-Moghaddam et al. used ALO algorithm to solve the optimal sizing and siting of distributed generation. The results showed that ALO had better performance than particle swarm optimization (PSO) and genetic algorithm (GA) in this field [29]. Raju et al. applied ALO algorithm for optimization of the controller gains. The results showed that the controller performed better in stabilization time(s), peak overshoot, and oscillations [30]. In 2016, by using ALO algorithm, Saxena et al. solved the problem of antenna current and antenna position optimization [31]. In the paper of Umaheswari et al., ALO was first adopted to solve the integrated maintenance scheduling problem [32]. Dinakara et al. proposed to determine the optimal distributed generation size by ALO. This approach achieved the purpose of reducing system power loss and improving voltage profile [33]. In [34], ALO was performed multilevel thresholding based on the contextual information of the image. Contextual information enhanced the quality of the segmented image as it considered not only the pixel value but also its vicinity. Jin et al. proposed a method to image segmentation based on ALO and fuzzy c-means (FCM). The proposed method alleviated the problem that the segmentation results of the images were unsatisfactory due to the presence of noise [35]. Yue et al. proposed an improved ALO called BIALO to enhance industrial images. Three strategies improved exploration and exploitation capabilities of the native algorithm [36]. In fact, there are still several disadvantages of the native ALO, such as the slow convergence rate, falling easily into local optimum and so on. In view of this phenomenon, it is necessary to improve the performance of the native ALO. In the paper of Wu et al., chaos was introduced into the initialization stage of ALO algorithm [37]. The improvement of ALO algorithm by Subhashini was to change the elite weight [38]. Majhi et al. proposed a hybrid clustering method based on k-means and ALO algorithm for cluster analysis in 2018 [39]. Some authors also include opposition-based learning (OBL) in their methods. This scheme can look for the opposite direction of each candidate solution. If the opposite point is beneficial then it is used as the candidate solution before proceeding to the next iteration. OBL helps in further exploration and better probability to converge to the optimum. Sarkhel et al. embedded OBL into harmony search algorithm, which improved the convergence rate of the algorithm [40]. Ewees et al. proposed a grasshopper optimization algorithm based on OBL strategy. Experimental results proved that the modified algorithm was competitive on engineering optimization problems [41]. In 2016, Ahandani et al. combined OBL with shuffled bidirectional differential evolution algorithm, which sped up the search process the algorithm [42].

    Inspired by these successful applications of OBL strategy, OBL strategy is introduced into ALO algorithm to avoid falling into the local optimum. The search accuracy and convergence performance are improved. Then Otsu and Kapur's entropy as objective functions are maximized by MALO to find the optimum threshold values. Finally, the provided images are segmented into some classes. In this paper, IEEE CEC2017 benchmark functions [43] are used to evaluate the effectiveness of MALO. 7 traditional algorithms and 4 improved algorithms are selected for comparisons. The quality of the segmented images is evaluated in terms of fitness value, peak signal-to-noise ratio (PSNR) [44,45], structural similarity index (SSIM) [46,47,48], feature similarity (FSIM) [49,50], and computational time. The experimental results confirm that the proposed method can be used effectively for multilevel thresholding.

    The remainder of this paper is organized as follows: Section 2 outlines Otsu and Kapur's entropy methods for multilevel thresholding. Section 3 gives an overview of ALO followed by its mathematical model. ALO algorithm based on opposition-based learning for multilevel thresholding color image segmentation is presented in Section 4. Simulation experiments and results analysis are described in Section 5. Finally, Section 6 concludes the work and suggests some directions for future studies.

    Thresholding segmentation processes the histogram of digital images. An algorithm is used as the segmentation criterion. The threshold that satisfies the criterion function is called the optimal threshold. Based on the optimal threshold, the image is divided into target region and background region. The image thresholding method can be summarized into two categories: bi-level thresholding segmentation and multilevel thresholding segmentation. Bi-level thresholding segmentation cannot completely extract the target for a particular image. Multilevel thresholding divides the whole image into multiple regions. Multilevel thresholding segmentation can highlight the features among image regions.

    The color image is represented by three different 8-bit gray values of R, G, and B channels. ni denotes the number of pixels whose gray level is i. N denotes the total number of pixels. pi denotes the distribution probability of the ith gray value. They are defined as follows:

    N=L1i=0ni (1)
    pi=niN (2)
    L1i=0pi=1 (3)

    Suppose there are K thresholds of t1,t2,,tK. They divide the gray level of a given image into K+1 classes: C0=[0,1,,t11],C1=[t1,t1+1,,t21],CK=[tK,tK+1,,L1].

    The selection of threshold is related to the quality of the segmentation results. In this paper, Otsu and Kapur's entropy methods are adopted.

    Otsu is an automatic threshold selection method for image segmentation, which was proposed in 1979. According to the grayscale characteristics of images, Otsu calculates the variance of class and determines the threshold. When the maximum variance of class is obtained, the threshold returned by the objective function is called the optimal threshold.

    Equations (4)–(6) represent the probabilities of the class occurrence, the class mean levels, and the total mean level of the original image, respectively.

    ωj=iCjpij=0,1,,K. (4)
    μj=iCjipiωj (5)
    μT=L1i=0ipi (6)

    Then the total variance among the classes is:

    σ2(t1,t2,,tK)=kj=0ωj(μjμT) (7)

    When σ2(t1,t2,,tK) takes the maximum value, (t1,t2,,tk) is the optimal thresholding group of Otsu method.

    In thresholding segmentation methods, Kapur's entropy method introduces the "entropy" of information theory into the segmentation. According to the additivity of entropy, the total entropy of the segmented image is:

    ψ(t1,t2,tK)=t11i=0piP0lnpiP0t21i=t1piP1lnpiP1L1i=tKpiPKlnpiPK (8)
    Pj=iCjpij=0,1,,K. (9)

    where pi is the distribution probability of the ith gray value, Pk is the probability of each class.

    Kapur's entropy method finds the optimal threshold values based on maximizing the total entropy. The optimal threshold is determined by the following equation:

    {t1,t2,,tK}=argmax0<t1<t2<tK<L1(ψ(t1,t2,,tK)) (10)

    Ant lion optimizer is a novel swarm intelligent optimization algorithm. By simulating the process of antlion preying on ants in nature, the practical optimization problem is solved. The antlion uses its jaw to dig a cone-shaped pit in sand. After digging the trap, the antlion hides underneath the bottom of the cone. Random walks of ants may fall into it. Once an ant falls into trap, the antlion throws sand to the edge of the pit and preys on it. After the antlion eats prey, it rebuilds its trap for the next hunt. Figure 1 shows several antlions and cone-shaped pits with different sizes. The details of the ALO algorithm are discussed as follows.

    Figure 1.  Antlions and cone-shaped pits with different sizes [28].

    Since ants move randomly in nature, the following equation is established to simulate the random movement of ants.

    X(t)=[0,cumsum(2r(t1)1),,cumsum(2r(tn)1)] (11)

    where the cumsum function evaluates the cumulative value of an array, r(t) function is defined as follows:

    r(t)={1ifrand>0.50ifrand<0.5 (12)

    where t shows the number of iterations in this study, rand is a random number that belongs to [0, 1].

    In order to make random walks of ants in the search space, the following equation is needed to normalize Eq (11).

    Xti=(Xtiai)×(dticti)(biai)+cti (13)

    where ai denotes the minimum of random walk array X(t), bi denotes the maximum of random walk array X(t), cti denotes the lower boundary of ith space at tth iteration, and dti denotes the upper boundary of ith space at tth iteration.

    The ants move randomly around the antlion, and the boundary of the area is affected by the position of the antlion. The calculation equations of cti and dti are as follows:

    cti=Antliontj+ct (14)
    dti=Antliontj+dt (15)

    where cti denotes the lower boundary at tth iteration, and dti is the upper boundary at tth iteration. Antliontj shows the position of the jth antlion at tth iteration by the roulette wheel selection.

    Once the ant enters the trap, in order to prevent it from escaping, the antlion immediately digs out the sand outside the hole to make the ant slide into the bottom of the hole. This process can be seen as the decreasing radius of the ant random walk. The equations are as follows:

    ct=ctI (16)
    dt=dtI (17)

    where I is the ratio of boundary contraction, and its equation is defined as follows:

    I=10ωtT (18)

    where t is the current iteration, T is the maximum of iterations. ω is a fixed value, which can adjust the speed of ant moving to antlion.

    According to the elite strategy, the antlion with the highest fitness value is considered as an elite, and the elite can affect the random walks of all ants. The antlion and the elite affect ant walking path. The ant's position update equation is as follows:

    Antti=RtA+RtE2 (19)

    where RtA is an ant random walks around an antlion selected by roulette wheel, RtE is this ant random walks around the elite.

    If the fitness of the updated ant is better than that selected antlion, which means that the ant is caught and eaten by the antlion. Then the position of the antlion is updated to this position of ant. The two equations are used as follows:

    Antliontj=Anttiiff(Antti)>f(Antliontj) (20)

    where Antti shows the ith ant with the best fitness value at tth iteration, and f is the fitness function value.

    ALO algorithm has drawbacks of falling easily into local optimum and lower search accuracy. In this section, a modified ALO algorithm is proposed. MALO uses opposition-based learning strategy to generate opposite solutions, which is helpful to search more effective regions. And then, MALO maximizes Otsu and Kapur's entropy methods to determine the optimal threshold.

    Tizhoosh et al. proposed the concept of opposition-based learning in 2005. The main idea of this strategy is to generate opposite solutions. By comparing opposite solutions with current solutions, excellent individuals can enter the next generation. Mathematically, the strategy is defined as follows:

    Suppose x=(x1,x2,,xD) is a point in the D-dimensional search space (can be regarded as a feasible solution), xj=[aj,bj],j=1,2,,D, and its corresponding opposite point ˜x=(˜x1,˜x2,,˜xD) can be defined as:

    ˜x=aj+bjxj (21)

    The fitness values of the current solution and the opposite solution are calculated. By comparison, the solution with the optimal fitness value is preserved.

    ALO algorithm has the advantages of simple principle, fewer parameter settings and so on. It also has the problems of slower convergence speed, falling easily into the local optimum, and lower search accuracy. In order to improve the exploration and exploitation of the ALO algorithm, OBL strategy is introduced in the native ALO. The probability of convergence to the global optimum is increased. For each iteration, the position of ant Antti is obtained by Eq (19). However, there may be a possibility that Antti is opposite or near the optimal position in the search space. Therefore, after each iteration, OBL is applied to generate the opposite solution ~Antti. The equation is as follows:

    ~Antti=ub+lbAntti (22)

    where ub denotes the upper bound and lb denotes the lower bound.

    The fitness values of the new position and the original position are compared. After the evaluation, the position with high fitness values are retained. After this process, the modification algorithm has more search attempts in each iteration [51,52].

    The time complexity of MALO is given based on four factors such as the number of search agents N, the number of dimension D, the maximum number of iterations T, the cost of function F. In the initialization process, the time complexity is O(N). The time complexity of sorting mechanism is O(N × logN). The time complexity of function evaluation is O(T × N × F). The time complexity is expressed as O(T × N × D) for the updating the positions. The time complexity of the updating phase by the OBL is O(T × N × D). The overall time complexity of MALO is O(N ×(1 + logN + T ×(F + 2D))).

    The process of finding the optimal threshold is actually to find the optimal solution. However, it has high time complexity when dealing with multilevel thresholds. In order to achieve efficiency, it is entirely possible to use the modified ALO algorithm to do this. The basic steps are described as follows:

    Firstly, test images in JPG format are read and histograms are obtained. The number of search agents and maximum number of iterations are initialized. MALO is implemented considering two different objective functions: Otsu and Kapur's entropy. Then, the fitness of initial population is calculated. The main loop begins with the second iteration. The updating position of ant is determined by a selected antlion by the roulette wheel and the elite. OBL strategy is applied to the obtained position of ant for generating the opposite solution. The fitness of original position and opposite position of ant are calculated and compared. The individual with high fitness value is preserved. If the fitness of ant is better than the antlion, then the position of antlion will be updated to the position of ant. This process is repeated until the maximum number of iterations is completed. The position of elite represents the optimal thresholds. The segmentation is carried out based on the obtained thresholds. Finally, the values of the evaluation measures and the segmented images are output. The pseudo code and the flowchart of MALO algorithm based multilevel thresholding are provided in Algorithm 1 and Figure 2, respectively.

    Figure 2.  Flowchart of MALO algorithm based multilevel thresholding.

    In this section, in order to evaluate the quality of image segmentation based on MALO, a series of experiments are conducted. Firstly, Section 5.1 indicates the parameter settings of comparison algorithms, test images selected in the experiment, and operating environment. Section 5.2 introduces the metrics used to evaluate the image segmentation performance in the experiment. Section 5.3 uses IEEE CEC2017 benchmark functions to validate the effectiveness of MALO. Section 5.4 compares MALO with some traditional algorithms. The experimental data are analyzed, and the performance of image segmentation based on various algorithms is evaluated. Furthermore, Section 5.5 compares MALO with some improved algorithms. The future research is also conducted.

    In this paper, 10 color images are selected from the Berkeley University database [53] for performance analysis. Figure 3 shows the original test images and the corresponding histograms. All images are in JPG format with a size of 481 × 321 pixels. Each algorithm runs each image 30 times separately. The number of threshold K includes: 4, 6, 8, 10, and 12.

    Figure 3.  Original test images and histograms. (Line a represent images; line b represent histograms.).

    In order to prove the superiority of the MALO algorithm, 7 traditional algorithms and 4 improved algorithms which have been proposed and widely applied to multilevel thresholding segmentation are selected for comparisons, including SSA [17], MVO [54], DA [19], FPA [18], PSO [55], SCA [34], MABC [56], IDSA [57], WOA-TH [58], and BDE [59]. These comparison algorithms have different search strategies and mathematical equations. The maximum of iterations for all algorithms is 500 and the population size is 25. We follow the same parameters in the original papers. The main parameters of various algorithms are shown in Table 1.

    Table 1.  Parameters for the compared algorithms.
    Algorithm Parameters Value
    SSA Balance coefficient c1 [0, 2]
    Random number c2, c3 [0, 1]
    Switch possibility 0.5
    MVO Wormhole Existence Probability [0.2, 1]
    Travelling Distance Rate [0, 1]
    Random number r1, r2, r3 [0, 1]
    DA Inertial weight ω [0.5, 0.9]
    Seperation weight [0, 0.2]
    Alignment weight [0, 0.2]
    Cohesion weight [0, 0.2]
    Food factor [0, 2]
    Enemy factor [0, 0.1]
    FPA Switch possibility 0.4
    Lévy constant β 1.5
    PSO Maximum inertia weight 0.9
    Minimum inertia weight 0.4
    Learning factors c1, c2 2
    Maximum velocity +120
    Minimum velocity −120
    SCA Movement direction r1 [0, 2]
    Movement distance r2 [0, 2π]
    Random weight r3 [0, 2]
    Random number r4 [0, 1]
    Switch possibility 0.5
    ALO Switch possibility 0.5
    MABC Random number r [0, 1]
    IDSA Random number r [0, 1]
    WOA-TH Parameter a [0, 2]
    Constant b 1
    Random number l [−1, 1]
    Constant a0 13
    Initial value G0 40
    BDE Number of objectives 1
    Number of constraints 0
    Number of decision variables 4
    Scaling factor 0.5
    Crossover probability 0.2

     | Show Table
    DownLoad: CSV

    All the experimental series were carried out on MATLAB R2016b, and the computer was configured as Intel(R) Core(TM) i5-4210U CPU @1.70 GHz, using Microsoft Windows 10 system.

    Algorithm 1. Pseudo code of MALO algorithm based multilevel thresholding.
    1 Input the image and calculate components of the histogram.
    2 Initialize parameters: SearchAgents_no (the number of search agents), T (maximum number of iterations).
    3 Calculate the fitness of initial ants and antlions;
    4 Find the best antlions and assume it as the elite;
    5 While t < T
    6   For each ant
    7     Select an antlion using Roulette wheel;
    8     Update c and d using Eqs (16) and (17);
    9     Create a random walk and normalize it using Eqs (11) and (13);
    10     Update the position of ant using Eq (19);
    11   End for
    12   For each the position of ant
    13     Generate the opposite solution of the position of ant using Eq (22);
    14     Calculate the fitness of original position and opposite position of ant;
    15     Compare fitness values and keep ant fitness and position with high fitness value;
    16   End for
    17     Update antlion positions and finesses based of the ants Eq (20);
    18     Update the position of elite if any antlions becomes fitter than it;
    19     t = t + 1;
    20 End while
    21 Return elite fitness and position, which elite position represents the optimal thresholds.
    22 Output the values of the evaluation measures and the segmented images.

     | Show Table
    DownLoad: CSV

    This paper evaluates the quality of image segmentation from the following five aspects:

    1) Fitness value. Since Otsu and Kapur's entropy methods are maximization problem, the fitness values are expected to be as large as possible. The optimal fitness values show that the algorithm has high accuracy and convergence performance.

    2) PSNR. It is an objective evaluation measure based on pixel error. A higher PSNR value indicates that the quality of the distorted image is better. However, it is based on the error between corresponding pixels and does not consider the visual characteristics of human eyes. Its calculation equation is as follows:

    PSNR=10log10L2MSE(db) (23)

    where L represents the scale range of the image. For an 8-bit image, L = 255. MSE is the mean square error between the original image and the processed image.

    MSE=Mm=1Nn=1[R(m,n)I(m,n)]2M×N (24)

    where M × N is the size of the image, R(m,n) represents the gray value of coordinates at the reference image (m, n), and I(m,n) represents the gray value of coordinates at the distorted image (m, n).

    3) SSIM. It is an objective evaluation measure based on structural similarity. It measures the image similarity from brightness, contrast, and structure. SSIM value range is [0, 1]. If the value is closer to 1, the image distortion is smaller. It is defined as follows:

    SSIM(R,I)=(2μRμI+C1)(2σRI+C2)(μ2R+μ2I+C1)(σ2R+σ2I+C2) (25)

    where UR and UI are the average gray values of the original image R and the segmented image I, respectively. σ2R and σ2I represent the variance of image R and image I, respectively. σRI is the covariance of image R and image I. C1=(0.01L)2, C2=(0.03L)2.

    4) FSIM. Based on SSIM, researchers have proposed a new evaluation measure, namely feature similarity algorithm (FSIM). We use two complementary features of phase congruency (PC) and gradient magnitude (GM) to calculate FSIM.

    FSIM=xΩSL(x)×PCm(x)xΩPCm(x) (26)

    where Ω is the pixel field of the entire image, SL(x) represents the similarity value of each position x, and PCm(x) denotes the phase consistency measure.

    SL(x)=[SPC(x)]α×[SG(x)]β (27)
    PCm(x)=max(PC1(x),PC2(x)) (28)

    where SPC(x) is the similarity measure of phase consistency, SG(x) represents the similarity measure of gradient magnitude, and α, β are both constants.

    SPC(x)=2PC1(x)×PC2(x)+T1PC21(x)×PC22(x)+T1 (29)
    SG(x)=2G1(x)×G2(x)+T2G21(x)×G22(x)+T2 (30)

    where T1 and T2 are positive constants.

    5) Computational time. The smaller the value, the faster the algorithm execution speed.

    In this subsection, 29 IEEE CEC2017 benchmark functions are chosen to check the efficiency of algorithms. We skip "F2" of IEEE CEC2017 because of its unstable behavior. These functions are divided into four groups: unimodal (F1–F3), multimodal (F4–F10), hybrid (F11–F20), and composition (F21–F30). Furthermore, the relevant composition, dimension, range limitation and optimal position of 29 functions can be found in [43]. Meanwhile, all experiments are conducted 30 times.

    In MALO, the OBL strategy can developed more in the later search period. Compared with the native ALO, it has excellent exploration and exploitation. For the OBL strategy, putting it into ALO as a strategy can greatly improve the convergence and high efficiency. The performance of algorithms is evaluated according to the mean value (Mean) and standard deviation (Std). The stability of each model is evaluated by Std value. Meanwhile, the best results has been highlighted in boldface in Table 2. From the table above, we can observe that MALO based method gives the satisfied results in general. For example, in the unimodal and multimodal functions, the proposed method gives better results in 10 out of 18 cases (9 functions and 2 indexes). In terms of hybrid functions, the MALO based method outperforms in 12 out of 20 cases (10 functions and 2 indexes) for others. In the composition functions, the proposed method gives better results in 10 out of 20 cases (10 functions and 2 indexes). All the other algorithms show a certain difference with MALO based method. The experimental results above are effectively proved the superior performance of proposed method. The ability to avoid local optimization has enhanced. Thus, it can be said that the proposed method in this paper is more effective than competitors in 29 benchmark functions, so this paper combines MALO with multilevel thresholding segmentation method to improve the image segmentation accuracy.

    Table 2.  Comparison of the mean and standard deviation of fitness values obtained.
    F SSA MVO DA FPA PSO SCA ALO MALO
    F1 Mean 2.7525 × 103 2.0775 × 104 5.3030 × 107 9.4246 × 107 2.3768 × 103 1.1165 × 109 1.6205 × 103 2.2691 × 102
    Std 3.1853 × 103 1.0204 × 104 1.3048 × 108 1.6194 × 108 3.3853 × 103 2.6690 × 108 1.6927 × 103 7.5223 × 102
    F3 Mean 3.0002 × 102 3.0015 × 102 3.3792 × 103 5.6230 × 103 3.0009 × 102 3.0174 × 103 4.5012 × 102 4.4652 × 102
    Std 8.4151 × 10−2 7.5858 × 10−2 3.5353 × 103 3.7208 × 103 7.7137 × 10−2 1.6524 × 103 3.7837 × 102 3.1829 × 102
    F4 Mean 4.0989 × 102 4.0702 × 102 4.2856 × 102 4.6977 × 102 4.0507 × 102 4.6709 × 102 4.1395 × 102 4.0394 × 102
    Std 16.908 9.3281 29.903 61.297 1.2334 30.876 22.338 12.248
    F5 Mean 5.2912 × 102 5.2264 × 102 5.1732 × 102 5.6206 × 102 5.4292 × 102 5.5799 × 102 5.2180 × 102 5.1692 × 102
    Std 12.497 1.1788 × 10 8.4145 21.327 14.890 6.6091 13.640 2.8811
    F6 Mean 6.1533 × 102 6.0237 × 102 6.0125 × 102 6.3945 × 102 6.1021 × 102 6.2361 × 102 6.1562 × 102 6.7956 × 102
    Std 8.9433 3.1079 1.4272 16.075 8.8947 5.4162 8.8988 10.159
    F7 Mean 7.4500 × 102 7.3257 × 102 7.3766 × 102 7.9322 × 102 7.3056 × 102 7.8595 × 102 7.5048 × 102 7.2403 × 102
    Std 15.007 12.483 14.458 26.384 12.387 10.193 26.572 2.3596
    F8 Mean 8.2630 × 102 8.2696 × 102 8.1554 × 102 8.4529 × 102 8.2131 × 102 8.4537 × 102 8.2771× 102 8.1001 × 102
    Std 11.690 12.498 7.2712 16.236 7.9025 8.7128 14.163 9.4471
    F9 Mean 1.0897 × 103 9.0116 × 102 9.2457 × 102 1.7066 × 103 9.6607 × 102 1.0671 × 103 1.1272 × 103 1.0417 × 103
    Std 2.5134 × 102 2.8801 51.037 6.1484 × 102 1.1193 × 102 81.732 2.2796 × 102 1.8741 × 102
    F10 Mean 1.8446 × 103 1.7723 × 103 1.7989 × 103 2.1907 × 103 1.9995 × 103 2.5054 × 103 2.0639 × 103 1.2226 × 103
    Std 2.8235 × 102 2.8547 × 102 3.4047 × 102 3.9008 × 102 2.9524 × 102 2.0358 × 102 3.1110 × 102 1.7148 × 102
    F11 Mean 1.1840 × 103 1.1325 × 103 1.2913 × 103 1.2604 × 103 1.1388 × 103 1.2494 × 103 1.2125 × 103 9.3895 × 104
    Std 71.184 27.254 8.0087 × 102 1.1285 × 102 2.7432 × 105 76.249 74.386 24.745
    F12 Mean 3.1659 × 106 1.9237 × 106 8.5333 × 105 5.3131 × 106 2.8460 × 109 3.6304 × 107 2.9647 × 106 2.2571 × 104
    Std 3.9918 × 106 2.4011 × 106 1.0164 × 106 5.2872 × 106 1.4432 × 109 4.6673 × 107 3.6635 × 106 3.1055 × 104
    F13 Mean 1.7372 × 104 1.2349 × 104 1.6552 × 104 2.3449 × 104 3.2613 × 108 8.9513 × 104 1.3896 × 104 1.1517 × 104
    Std 1.2611 × 104 9.7419 × 103 9.0887 × 103 1.8794 × 104 2.7709 × 108 8.0007 × 104 1.2201 × 104 7.8833 × 103
    F14 Mean 3.3621 × 103 3.0338 × 103 4.8484 × 103 2.8067 × 103 2.8688 × 103 2.3311 × 103 2.6070 × 103 2.3278 × 103
    Std 2.7150 × 103 2.3148 × 103 1.8854 × 103 1.4364 × 103 2.1263 × 103 1.0895 × 103 1.6260 × 103 1.2880 × 103
    F15 Mean 6.2001 × 103 3.3924 × 103 6.4284 × 103 9.6586 × 103 3.9125 × 103 3.7996 × 103 1.3375 × 104 3.0564 × 103
    Std 4.2086 × 103 3.5797 × 103 5.0026 × 103 7.7162 × 103 3.7024 × 103 2.3791 × 103 1.0871 × 104 2.1255 × 103
    F16 Mean 1.8063 × 103 1.8309 × 103 1.7338 × 103 1.9840 × 103 1.8428 × 103 1.8126 × 103 1.8928 × 103 1.8066 × 103
    Std 1.4760 × 102 1.6725 × 102 1.2125 × 102 1.4716 × 102 1.2492 × 102 80.085 1.6074 × 102 1.0356 × 102
    F17 Mean 1.7831 × 103 1.7871 × 103 1.7693 × 103 1.8044 × 103 1.7796 × 103 1.7897 × 103 1.7795 × 103 1.7359 × 103
    Std 38.227 56.931 33.562 52.636 59.130 14.372 39.757 34.260
    F18 Mean 1.9046 × 104 1.7527 × 104 2.4433 × 104 1.5703 × 104 1.6595 × 104 4.2187 × 105 1.6102 × 104 1.6102 × 104
    Std 1.3350 × 104 1.1493 × 104 1.5706 × 104 1.2231 × 104 1.3320 × 104 4.6787 × 105 1.3045 × 104 1.2885 × 104
    F19 Mean 9.3321 × 103 4.8206 × 103 1.1236 × 104 9.2778 × 104 5.1293 × 103 1.0034 × 104 1.6927 × 104 1.9544 × 103
    Std 7.1553 × 103 4.0080 × 103 6.8870 × 103 2.0401 × 105 3.8240 × 103 8.8662 × 103 1.2359 × 104 3.1306 × 103
    F20 Mean 2.1580 × 103 2.1181 × 103 2.1072 × 103 2.1974 × 103 2.1351 × 103 2.1393 × 103 2.1520 × 103 2.1017 × 103
    Std 77.357 71.982 59.164 81.489 81.620 37.232 76.695 1.1244 × 102
    F21 Mean 2.2892 × 103 2.3067 × 103 2.3146 × 103 2.3260 × 103 2.3033 × 103 2.2951 × 103 2.3181 × 103 2.2919 × 103
    Std 58.652 43.950 23.354 56.359 69.965 67.337 23.092 23.025
    F22 Mean 2.3032 × 103 2.4325 × 103 2.3387 × 103 2.3737 × 103 2.3168 × 103 2.3923 × 103 2.3019 × 103 2.2108 × 103
    Std 1.5330 4.0570 × 102 1.5916 × 102 3.0758 × 102 86.302 36.970 14.139 4.3619
    F23 Mean 2.6246 × 103 2.6213 × 103 2.6263 × 103 2.6544 × 103 2.6993 × 103 2.6630 × 103 2.6330 × 103 2.6235 × 103
    Std 9.4651 8.4456 11.398 27.680 38.621 9.4154 13.016 8.6164
    F24 Mean 2.7448 × 103 2.7399E+03 2.7422E+03 2.7726E+03 2.7821E+03 2.7773E+03 2.7541E+03 2.7242E+03
    Std 48.315 45.915 47.575 55.733 1.1838 × 102 59.112 13.296 10.259
    F25 Mean 2.9316 × 103 2.9322 × 103 2.9355 × 103 2.9755 × 103 2.9227 × 103 2.9816 × 103 2.9352 × 103 2.9316 × 103
    Std 30.687 28.163 23.579 53.181 23.221 24.991 28.272 2.7704 × 102
    F26 Mean 2.9852 × 103 3.0412 × 103 3.1910 × 103 3.5113 × 103 3.2078 × 103 3.1238 × 103 3.0689 × 103 3.0597 × 103
    Std 2.7007 × 102 3.8042 × 102 3.9782 × 102 4.9123 × 102 5.0084 × 102 37.746 2.7801 × 102 2.5490 × 102
    F27 Mean 3.0942 × 103 3.0936 × 103 3.0975 × 103 3.1538 × 103 3.1493 × 103 3.1084 × 103 3.1028 × 103 3.0346 × 103
    Std 3.6648 3.4486 6.0913 55.897 67.675 4.4917 15.597 1.4249
    F28 Mean 3.3187 × 103 3.3510 × 103 3.3579 × 103 3.4196 × 103 3.2028 × 103 3.3398 × 103 3.3863 × 103 3.1170 × 103
    Std 1.6379 × 102 1.3529 × 102 95.702 1.6486 × 102 78.068 90.179 1.3401 × 102 1.0508 × 102
    F29 Mean 3.2573 × 103 3.2282 × 103 3.2212 × 103 3.4234 × 103 3.2563 × 103 3.2629 × 103 3.2707 × 103 3.1694 × 103
    Std 81.947 83.366 55.368 1.3273 × 102 82.282 33.745 94.979 22.526
    F30 Mean 5.4626 × 105 5.5507 × 105 1.0112 × 106 2.2409 × 106 6.8210 × 104 1.7827 × 106 7.0103 × 105 1.5116 × 104
    Std 5.8213 × 105 6.5747 × 105 1.3632 × 106 2.9983 × 106 6.4354 × 104 1.3111 × 106 2.1161 × 106 7.2776 × 104

     | Show Table
    DownLoad: CSV

    The fitness value can be used as an index to evaluate the performance of segmentation method. All the experiments are conducted 30 times on 10 color images. Tables 3 and 4 respectively show average fitness values using Otsu and Kapur's entropy compared with other algorithms. In every line, the maximum is in bold. From these tables, it can be seen that MALO algorithm finds the maximum fitness values more times than other algorithms. However, the same objective function value obtained by several algorithms also occasionally occurs when the threshold value is small (such as K = 4, 6, and 8). Overall, the OBL strategy can improve the calculation accuracy of ALO algorithm, which helps to find the global optimal solution and improve the overall performance.

    Table 3.  Comparison of fitness values obtained with each algorithm for Otsu.
    Image K SSA MVO DA FPA PSO SCA ALO MALO
    Cactus 4 2126.2412 2126.2412 2126.2412 2084.2192 2126.2085 2091.2043 2126.1077 2126.2412
    6 2188.8026 2188.7881 2188.7749 2152.9126 2180.5976 2151.3710 2188.6529 2188.8076
    8 2213.1588 2213.1207 2210.6763 2185.1975 2206.7101 2177.4155 2212.8736 2213.2108
    10 2224.0745 2224.9921 2224.4972 2202.9660 2224.8409 2205.3385 2223.8535 2225.0378
    12 2228.0349 2231.4043 2227.1859 2208.4757 2230.3736 2209.0205 2230.9917 2231.8810
    Kangaroo 4 1114.7964 1114.7964 1114.7964 1088.7665 1114.7783 1088.6203 1114.7451 1114.7964
    6 1164.7339 1164.7235 1162.2148 1131.7231 1157.9995 1142.5799 1164.5055 1164.7463
    8 1186.9998 1187.2317 1186.4981 1164.0753 1181.4079 1157.1404 1187.0901 1187.3921
    10 1195.5800 1198.8061 1198.1305 1175.6658 1195.7200 1172.3154 1197.6616 1199.0721
    12 1201.3621 1204.3553 1204.0964 1189.4752 1203.7897 1186.9269 1204.8168 1205.6190
    Temple 4 1510.8080 1511.3099 1511.3110 1481.4555 1511.2952 1484.9151 1511.1720 1511.3110
    6 1562.1584 1551.2497 1562.1657 1539.3204 1547.2460 1528.3151 1562.0323 1562.1677
    8 1575.4345 1581.9379 1580.1512 1558.9731 1577.2711 1552.2760 1578.5870 1582.0010
    10 1585.0462 1589.3769 1588.9537 1566.9471 1583.4601 1562.6224 1589.3855 1590.0709
    12 1593.4902 1592.3625 1594.7102 1577.6113 1589.2313 1577.5018 1595.2350 1596.7043
    Flower 4 2319.2628 2319.2628 2319.2628 2300.8905 2319.2628 2305.0308 2319.2088 2319.2628
    6 2373.7148 2373.9784 2373.9666 2349.7530 2366.7255 2348.8170 2373.7751 2374.0062
    8 2398.3260 2397.7703 2398.6865 2373.7415 2393.6744 2378.1142 2398.0974 2398.7056
    10 2408.6487 2409.1083 2410.1377 2392.7685 2409.5320 2393.4470 2409.9581 2410.1748
    12 2415.5456 2416.1915 2413.2197 2401.7458 2413.6013 2402.8505 2416.6995 2417.4773
    Mountain 4 1922.6304 1922.6304 1922.6304 1880.8725 1922.6304 1899.0075 1922.5604 1922.6304
    6 1966.3537 1969.5924 1969.5227 1950.3434 1964.7413 1937.2954 1969.3259 1969.6134
    8 1987.6882 1987.6512 1987.6006 1971.0006 1982.4353 1963.1189 1987.3940 1989.0684
    10 1998.2296 1998.3989 1999.2217 1976.2590 1995.3262 1980.4772 1998.6023 1999.5736
    12 2002.3212 2003.5176 2003.4479 1991.7908 2002.3326 1987.1898 2003.1927 2004.4332
    Tree 4 4836.5287 4836.5254 4836.5287 4811.7023 4836.5184 4799.5909 4836.4226 4836.5287
    6 4910.3426 4910.3170 4910.3328 4881.3483 4899.1851 4889.6357 4909.9888 4910.3389
    8 4938.5519 4938.7280 4939.0548 4895.7628 4932.5126 4897.8287 4939.0439 4939.2738
    10 4954.4191 4954.3250 4954.3494 4931.0184 4950.5741 4925.6878 4953.6297 4954.7408
    12 4961.5040 4962.0370 4961.7003 4947.5680 4958.4948 4933.2448 4961.9255 4962.8681
    Horse 4 4169.9500 4169.9500 4169.9475 4146.0648 4169.9500 4125.8875 4169.9152 4169.9500
    6 4223.2790 4226.2869 4226.2925 4206.4679 4226.2960 4184.3739 4226.1384 4226.2981
    8 4251.0736 4247.9571 4250.7202 4224.2255 4242.3477 4224.8735 4251.0627 4251.0806
    10 4264.1067 4264.0484 4263.6881 4245.5168 4263.0609 4242.4543 4263.8776 4264.5464
    12 4271.0552 4270.2470 4270.4589 4253.0366 4270.9270 4255.1561 4269.9287 4272.7303
    Bridge 4 4386.0155 4386.0155 4386.0155 4348.0212 4386.0155 4364.6402 4385.8679 4386.0155
    6 4448.8450 4456.6582 4456.6941 4430.7839 4456.6543 4416.6522 4448.6228 4456.6941
    8 4483.9318 4476.1230 4481.9799 4459.7426 4480.7550 4436.7087 4480.4869 4484.0957
    10 4495.8304 4494.1137 4497.7496 4475.7876 4494.2483 4472.8251 4497.6619 4498.1770
    12 4505.0626 4504.6934 4502.9179 4488.9690 4504.8794 4485.6536 4504.6902 4506.5159
    Pilot 4 3854.8970 3854.8970 3854.8970 3838.0151 3854.8930 3807.6575 3854.8127 3854.8970
    6 3902.7853 3896.5334 3902.7747 3884.5667 3902.7796 3869.1994 3902.6187 3902.7731
    8 3917.0447 3917.7421 3920.6198 3892.5037 3918.0121 3895.6690 3920.4228 3923.5580
    10 3931.0115 3928.4714 3933.5071 3915.8877 3931.1832 3904.4969 3932.5873 3934.2915
    12 3937.8965 3936.9459 3936.6517 3916.5100 3935.4087 3916.0317 3939.2200 3940.3098
    Dog 4 2249.9855 2249.9839 2249.9855 2231.2675 2249.9855 2233.1946 2249.9484 2249.9855
    6 2299.7269 2299.6899 2298.6466 2270.5848 2287.9683 2277.7186 2299.5470 2299.7446
    8 2320.5275 2317.0263 2320.4939 2297.8192 2303.3155 2296.9113 2320.2281 2320.5319
    10 2326.4485 2329.6067 2330.9585 2311.9971 2328.1692 2306.4227 2330.4593 2330.9965
    12 2334.7496 2336.2099 2334.3909 2323.5986 2332.0819 2320.2905 2335.7878 2337.4348

     | Show Table
    DownLoad: CSV
    Table 4.  Comparison of fitness values obtained with each algorithm for Kapur's entropy.
    Image K SSA MVO DA FPA PSO SCA ALO MALO
    Cactus 4 18.5843 18.5843 18.5843 18.3930 18.5829 18.4259 18.5832 18.5843
    6 23.8329 23.8233 23.8386 23.2412 23.8389 23.2857 23.8364 23.8420
    8 28.4940 28.3247 28.5120 27.0680 28.4911 27.3938 28.4814 28.5198
    10 32.6224 32.0489 32.7875 30.4517 32.8282 30.7148 32.7883 32.8463
    12 36.7255 35.3654 36.6688 34.7456 36.7983 34.2975 36.6721 36.8450
    Kangaroo 4 18.9363 18.9353 18.9361 18.6549 18.9352 18.7771 18.9350 18.9363
    6 24.4683 24.4414 24.4720 23.6425 24.4648 24.0457 24.4563 24.4753
    8 29.3790 29.2133 29.3699 28.7933 29.4014 28.2712 29.4026 29.4202
    10 33.8064 33.4514 33.8602 32.6267 33.1534 32.0603 33.8653 33.9054
    12 37.8707 37.1153 37.9876 36.2125 38.0001 35.4540 37.9065 38.0410
    Temple 4 17.8159 17.8201 17.8061 17.4725 17.8046 17.5013 17.8195 17.8204
    6 22.9388 22.7544 22.9388 22.2007 22.8940 22.0680 22.9246 22.9388
    8 27.5032 27.2493 27.4436 25.9640 27.4909 25.5465 27.5208 27.5351
    10 31.6211 30.6718 31.6425 29.5279 31.6160 28.9053 31.6706 31.7574
    12 34.2789 33.0925 35.3472 31.7622 34.7704 32.2631 35.3818 35.6116
    Flower 4 18.7000 18.6993 18.7000 18.4447 18.6996 18.4765 18.6980 18.7005
    6 24.0481 24.0186 24.0485 23.6039 24.0429 23.3247 24.0441 24.0511
    8 28.7647 28.6438 28.7955 27.6104 28.7721 27.7280 28.7727 28.8057
    10 33.0270 32.9200 33.1672 31.2963 33.1582 31.3512 33.1673 33.1976
    12 36.8699 35.9637 37.1214 34.8362 37.0372 34.9773 36.9291 37.1549
    Mountain 4 17.7231 17.7035 17.7213 17.5421 17.7372 17.4362 17.7390 17.7213
    6 23.1283 23.0802 23.0902 22.5402 23.1001 22.4117 23.1173 23.1119
    8 27.9637 27.6405 27.9315 26.6905 27.9354 26.4147 27.9302 27.9679
    10 32.1404 31.9221 32.3451 30.9813 32.2561 30.0080 32.3415 32.4426
    12 36.3399 34.9350 36.3823 34.0005 35.6920 33.6967 36.1384 36.4707
    Tree 4 18.9965 18.9962 18.9965 18.8465 18.9961 18.8254 18.9953 18.9965
    6 24.3933 24.4095 24.4100 23.8731 24.3889 23.4245 24.4083 24.4149
    8 29.2846 28.9004 29.2918 27.8265 29.2753 27.6207 29.2581 29.2936
    10 33.5397 33.0809 33.6613 31.4879 33.6439 31.7828 33.5491 33.6785
    12 37.3776 36.7041 37.4570 35.2858 37.5764 34.8717 37.5111 37.6312
    Horse 4 18.6614 18.6259 18.6230 18.3914 18.6252 18.5251 18.6614 18.6619
    6 24.0609 23.8743 24.0802 23.2431 24.0604 22.8699 24.0675 24.0806
    8 28.8403 28.5613 28.8907 27.9542 28.8416 27.6730 28.8914 28.8992
    10 33.2142 32.3696 33.2125 31.1950 33.2741 30.7256 33.2480 33.3135
    12 36.8467 35.6548 37.0718 34.9857 37.0695 33.8890 37.1782 37.3216
    Bridge 4 18.1906 18.1436 18.1902 18.0033 18.1903 18.0580 18.1903 18.1907
    6 23.5631 23.5510 23.5679 22.8880 23.5610 22.8246 23.5649 23.5682
    8 28.2604 27.9986 28.2930 27.0830 28.2859 26.7516 28.2786 28.3023
    10 32.5876 32.3366 32.5480 30.9047 32.5740 30.5593 32.5281 32.6189
    12 36.0703 35.4806 36.4991 33.5753 36.4588 33.0662 36.4400 36.5351
    Pilot 4 17.9368 17.9352 17.9362 17.6027 17.9362 17.7058 17.9355 17.9168
    6 23.0182 22.9648 23.0443 21.9322 23.0365 21.8927 23.0025 23.0447
    8 27.6539 27.4187 27.6678 26.2966 27.6452 25.7373 27.6307 27.6723
    10 31.6001 30.3305 31.7457 30.5445 31.7701 29.3977 31.7568 31.8639
    12 35.3121 34.3457 35.4310 32.7740 35.6276 31.7852 35.5945 35.7388
    Dog 4 18.5258 18.5246 18.4850 18.2690 18.5254 18.2825 18.5244 18.5261
    6 23.6922 23.6586 23.7386 22.7559 23.7121 22.7675 23.7319 23.7420
    8 28.3767 28.0194 28.3553 27.0852 28.3862 26.7027 28.3751 28.4079
    10 32.4951 31.5916 32.6709 31.2171 32.6231 29.8432 32.6604 32.6944
    12 36.4563 36.2405 36.3900 34.1968 35.8826 33.0948 36.5074 36.6079

     | Show Table
    DownLoad: CSV

    In order to make the experimental data more intuitive, the following experiments are conducted. The relevant convergence curve and boxplot are drawn. As shown in Figure A1 and A2, the evolution curve reflects the convergence speed and the accuracy of the algorithm, thus reflecting the overall performance of the algorithm. It can be seen from the convergence curve that the MALO algorithm can obtain the approximate optimal solution, which further improves the overall performance. For Table A2(d), (h), MALO algorithm and DA algorithm eventually approach the same function value. But for the rest of graphs, it is clear that the MALO algorithm is superior to other algorithms in the optimization process. MALO algorithm can reach the maximum fitness value at nearly the 100th iteration, which is earlier than other algorithms. This phenomenon indicates that the convergence rate of algorithm is improved. On the whole, it also proves that by introducing the OBL strategy, the stability of the algorithm is enhanced. As shown in Figures 4 and 5, the boxplot can effectively reflect the stability of the algorithm. Taking the two images of cactus and kangaroo as examples, it can be seen that the boxplot of MALO algorithm has the most flat shape, the highest position, and no bad points. This shows that the MALO algorithm has the highest stability compared with other algorithms by analysis of the 30 fitness values obtained.

    Figure 4.  Boxplots for fitness values using Otsu.
    Figure 5.  Boxplots for fitness values using Kapur's entropy.

    Tables A2 and A3 show PSNR values of Otsu and Kapur's entropy respectively. When the PSNR value is larger, the distortion of the segmented image is smaller. Through the data, it can be seen vertically that the PSNR value of high threshold is larger than that of low threshold. We see horizontally that the PSNR value of MALO algorithm is larger than other algorithms in most cases, especially at high threshold level. Tables A4 and A5 show SSIM values of Otsu and Kapur's entropy, respectively. Tables A6 and A7 show FSIM values of Otsu and Kapur's entropy, respectively. When the values of SSIM value and FSIM value are closer to 1, the images before and after segmentation are more similar and the segmentation effect is better. Comparing SSIM value and FSIM value, MALO algorithm is larger and closer to 1 than other algorithms. The maximum value is marked in bold. Most of the evaluation metrics obtained by MALO algorithm are optimal. The modified algorithm makes the image segmentation effect better.

    Tables 5 and 6 show the average computational time (in second) of each algorithm using Otsu and Kapur's entropy, respectively. MALO enhanced the native ALO in many aspects, such as fitness value, PSNR, SSIM, and FSIM. However, it can be found from Tables 5 and 6 that MALO has the relatively high time consumption compared to the other algorithms. In fact, the high consumption is mainly caused by the high computational cost of the native ALO. The proposed improvement results in increasing the computational time of MALO as well. In short, in order to improve the overall performance of algorithm, it cannot guarantee to obtain optimal parameters in all cases.

    Table 5.  The average computational time (in second) of each algorithm using Otsu.
    Image K SSA MVO DA FPA PSO SCA ALO MALO
    Cactus 4 0.4100 0.8700 1.8700 0.6900 0.7700 0.7100 1.4050 1.7200
    6 0.2500 0.7000 1.4900 0.6800 0.6700 0.6500 1.8700 2.1455
    8 0.2810 0.7800 1.5200 0.6800 0.7200 0.6800 2.3850 2.6000
    10 0.3200 0.7800 1.5600 0.7300 0.7600 0.7100 2.9545 3.2550
    12 0.3400 1.0600 1.6890 0.8630 0.9000 0.8400 4.8515 4.3270
    Kangaroo 4 0.5050 0.8100 1.8420 0.6700 0.7300 0.9580 1.4200 1.5505
    6 0.2690 0.7300 1.5200 0.6800 0.7600 0.6500 1.9600 2.1995
    8 0.3100 0.8300 1.6410 0.7010 0.7500 0.7400 2.4345 2.7155
    10 0.3400 0.8500 1.6000 0.7800 0.8200 0.7400 3.0750 3.3250
    12 0.3700 0.8400 1.6000 0.7800 0.8300 0.7900 3.7580 3.8305
    Temple 4 0.3700 0.8540 1.9250 0.6530 1.3210 0.6510 1.4300 1.5605
    6 0.2700 0.7600 1.5690 0.6500 0.7390 0.6510 1.9200 2.1755
    8 0.3000 0.8100 1.5800 0.7400 0.7600 0.6890 3.0805 3.5605
    10 0.4400 1.3800 2.3500 1.0690 0.7600 0.8100 3.7715 4.9285
    12 0.3600 0.8600 1.7200 0.7710 0.8000 0.7300 3.5765 4.2245
    Flower 4 0.4250 1.1510 2.8120 0.8400 0.8710 0.8550 2.1855 2.2690
    6 0.2700 0.7900 1.6000 0.7200 0.7700 0.7400 2.0005 3.2575
    8 0.3860 0.9860 2.5490 1.5090 0.8630 0.7330 4.1070 4.4885
    10 0.8540 1.6520 2.4080 0.9010 1.3190 1.5640 4.8340 4.6935
    12 0.5600 1.1700 2.1900 1.1300 0.8700 1.0000 3.7055 4.0505
    Mountain 4 0.4700 1.1750 2.8030 0.7110 0.9170 0.8500 2.2840 2.2155
    6 0.5170 0.9080 2.4520 0.7370 0.8370 0.7510 2.5625 2.1245
    8 0.2920 0.8200 1.7150 0.6800 0.9710 0.8810 3.3625 2.8755
    10 0.4300 0.8200 3.4100 0.7100 0.8010 0.8800 5.0305 4.2160
    12 0.4000 0.8820 1.5710 0.7900 1.1500 0.8550 4.4010 3.9205
    Tree 4 0.4500 0.9200 1.9700 0.9800 1.5640 0.7900 1.6595 2.3955
    6 0.4300 1.0950 2.6590 1.7460 1.0490 1.6700 3.1700 3.5230
    8 0.3410 1.4480 2.8000 0.9750 0.7530 0.6930 2.6675 3.7390
    10 0.3740 1.2760 2.3920 0.8310 0.8920 0.8130 3.6270 3.5155
    12 0.4500 0.9390 0.9390 0.9390 0.8990 0.8510 3.9570 5.2985
    Horse 4 0.4040 0.8970 1.8600 0.6840 0.7480 0.9190 1.7475 1.8105
    6 0.3140 0.8380 1.6460 0.8150 0.7450 0.6850 2.0365 2.2195
    8 0.3010 1.0490 1.8420 0.7300 0.8770 0.7740 3.2820 2.9730
    10 0.3300 0.8560 1.6410 0.7780 0.8540 0.7920 3.7315 3.8360
    12 0.3920 0.9120 1.7110 1.6600 1.6600 1.0670 4.2670 4.8615
    Bridge 4 0.4200 1.9550 2.5860 1.7110 0.9140 0.7110 1.6845 1.8555
    6 0.2660 0.8010 1.5530 0.7070 1.3360 1.0980 2.8115 3.0780
    8 0.3210 0.9610 2.7830 1.0120 0.9970 0.7930 4.5400 4.8560
    10 0.4110 1.5550 2.6160 1.0420 1.6320 0.9770 5.2685 5.8515
    12 0.5330 1.2210 2.9890 1.1920 1.9340 1.1170 4.6090 4.1150
    Pilot 4 0.4400 0.9200 2.3630 0.7820 1.0780 0.8350 1.8890 1.8405
    6 0.2810 1.6590 2.2270 0.7510 1.3550 0.8610 3.4105 2.8835
    8 0.4400 1.5610 2.2130 0.8350 1.0880 1.2600 3.6285 3.9075
    10 0.3700 1.0850 2.7580 1.2330 1.2590 1.3200 4.9585 5.6945
    12 0.3740 0.9200 1.7840 1.2990 1.1100 1.5060 5.2780 4.0805
    Dog 4 0.4500 1.0160 2.4440 0.8390 0.8300 1.3690 1.7170 2.5915
    6 0.2750 1.3830 2.4210 1.2500 0.8100 1.3300 3.1915 3.4480
    8 0.4700 0.9450 1.5800 0.7400 0.7400 0.7510 2.4325 2.8155
    10 0.3490 0.8300 1.5390 0.7190 0.8010 0.7220 3.0855 3.5100
    12 0.3300 0.8720 1.5700 0.7600 0.8700 0.7800 3.7950 4.3600

     | Show Table
    DownLoad: CSV
    Table 6.  The average computational time (in second) of each algorithm using Kapur's entropy.
    Image K SSA MVO DA FPA PSO SCA ALO MALO
    Cactus 4 0.6400 1.2900 1.9500 0.8000 1.6930 0.7800 1.5150 1.8455
    6 0.4700 0.8500 1.5890 0.8210 0.8910 0.7900 2.0750 2.3905
    8 0.4900 0.9500 1.6810 0.8110 0.8900 0.8080 2.4650 4.2290
    10 0.6230 1.2750 2.0900 1.0400 0.9900 0.8490 3.1220 3.6495
    12 0.5380 1.0030 1.7180 0.9570 1.0110 0.8900 3.6600 4.1195
    Kangaroo 4 0.5800 0.9600 1.8620 0.8300 0.8900 1.4690 2.2225 2.3925
    6 0.9260 1.2200 2.6770 1.4180 0.9600 1.0310 3.2235 2.9170
    8 0.4800 0.8900 1.6200 0.8200 0.9000 1.1690 2.5200 3.1900
    10 0.5210 0.9200 1.6400 0.8900 0.8700 0.8400 3.0550 3.6250
    12 0.5200 0.9900 1.7500 0.8800 0.9400 0.8900 3.6400 4.1070
    Temple 4 0.6100 1.6350 2.5860 1.2700 1.2480 0.9400 2.4355 2.8155
    6 0.4700 1.0400 2.3770 1.0500 1.2900 0.7900 2.0400 2.4100
    8 0.4700 0.9100 1.6800 0.8000 0.8900 0.8000 2.4900 2.9895
    10 0.5200 0.9300 1.6500 0.8600 1.0000 0.8400 3.1050 3.6095
    12 0.5700 1.0000 1.8200 0.9300 0.9100 0.8700 5.4985 4.5950
    Flower 4 0.6000 1.4130 2.6960 1.0000 1.2850 1.3000 2.3625 2.8995
    6 1.0690 0.9900 2.8420 0.9500 0.9390 0.9860 2.6195 2.7010
    8 0.4800 0.9900 1.7200 0.9400 0.9200 0.8700 2.6020 3.0850
    10 0.5300 0.9700 1.8010 0.9100 0.9990 0.9600 3.2255 3.6850
    12 0.6100 1.0700 1.8100 0.9400 1.0000 1.3790 5.1945 4.5065
    Mountain 4 0.5600 1.5490 1.9920 0.8570 0.8810 0.8310 1.5315 1.9575
    6 0.4410 0.9230 1.7220 0.9020 0.8820 0.8800 2.0330 2.4990
    8 0.5100 0.9710 1.7300 0.9000 0.9520 0.8420 2.5850 3.1700
    10 0.5480 1.0300 1.7900 0.9040 0.9510 0.9000 5.1080 4.0555
    12 1.0660 1.0420 1.9110 0.9610 1.0690 0.9580 3.9095 4.3645
    Tree 4 0.6200 1.3020 2.8450 1.0270 1.2090 1.3510 2.2510 2.7790
    6 0.5000 1.2040 2.6420 1.3380 1.1410 0.8990 2.1775 3.1785
    8 0.5110 0.8790 1.6500 0.8300 0.8800 0.8600 2.4650 2.9350
    10 0.5000 0.9300 1.6800 0.9190 0.8500 0.9000 3.0445 3.5950
    12 0.6700 1.0090 1.8600 0.9100 0.9400 0.9400 3.7930 4.1300
    Horse 4 0.6100 1.5700 3.2080 1.5370 1.6130 0.8400 2.5665 2.8115
    6 1.0800 1.2290 2.5900 0.8000 0.8100 0.9800 2.0500 2.4145
    8 0.4600 0.8900 1.6000 0.8300 0.8600 0.8900 2.6550 3.2905
    10 0.5000 0.9900 1.6400 1.1500 0.8900 0.8500 3.0550 3.6400
    12 0.5400 1.9330 2.0100 0.9800 1.0100 1.0000 3.7850 4.4105
    Bridge 4 0.6000 0.9500 1.7600 0.7600 0.8100 0.7300 1.4750 1.7950
    6 0.4100 0.8400 1.5700 0.8200 0.8400 0.8000 1.9300 2.3950
    8 0.4400 0.8600 1.5900 0.8700 0.8600 0.7900 2.4900 2.9775
    10 0.4700 0.9100 1.6400 0.7900 0.9100 1.2500 3.7975 3.9840
    12 0.5230 1.0150 2.1800 0.8710 0.9340 0.9500 3.7080 4.3340
    Pilot 4 0.5400 0.9400 1.7300 0.7500 1.0100 0.7700 1.4750 1.7600
    6 0.3900 0.8100 1.5500 0.8300 0.8700 0.8800 2.0940 2.5195
    8 0.4600 0.8400 1.8120 0.7760 0.9500 0.8600 2.6975 3.1400
    10 0.5650 1.1600 2.2950 0.9460 0.9790 0.9690 3.5840 4.1245
    12 0.5800 1.3060 2.3550 1.2900 1.0490 1.3350 5.6445 8.5025
    Dog 4 0.6600 1.2350 3.0700 1.0100 1.0550 1.6800 2.5700 3.0600
    6 0.5050 1.0870 2.1600 0.9200 0.9200 0.8500 2.2025 2.8425
    8 0.5050 1.2550 2.9380 1.0800 1.8400 1.4900 4.5565 5.3650
    10 0.5920 1.4200 2.2400 0.9200 1.2000 0.9250 3.4000 3.9405
    12 0.5790 1.0750 1.8410 0.9500 0.9990 0.9140 3.8400 4.5330

     | Show Table
    DownLoad: CSV

    Table A8 denotes the PSNR, SSIM and FSIM values obtained by MALO using the Otsu and Kapur's entropy. By comparison, it can be found that the average value of the evaluation metrics obtained by using the Otsu method is higher. For selected 10 images, using the Otsu method is just recommended. Wolpert and Macerday put forward the No Free Lunch (NFL) theorem [60]. Of course, Otsu and Kapur's entropy methods have different theoretical foundations, so the types of images they process also have different focuses.

    Tables A9 and A10 give the optimal thresholds of MALO under Otsu and Kapur's entropy at 4, 6, 8, 10, and 12 levels. Taking the "Tree" image an examples, the segmented results based on different algorithms using Otsu at 4, 6, 8, 10, and 12 levels are presented in Figure 6. Taking the "Horse" image an examples, the segmented results based on different algorithms using Kapur's entropy at 4, 6, 8, 10, and 12 levels are presented in Figure 7. Different target regions correspond to different threshold ranges. Considering the segmented images presented in Figures 6 and 7, it can be found that the images with high levels contain more information and details than that with low levels. Furthermore, the MALO based method has achieved the desired goal, because the main target areas have been efficiently identified. To sum up, the proposed method is competent for most cases and can still be considered as a competitive technique for the multilevel thresholding color image segmentation.

    Figure 6.  Segmented results of "Tree" image obtained by different algorithms using Otsu at 4, 6, 8, 10, and 12 levels.
    Figure 7.  Segmented results of "Horse" image obtained by different algorithms using Kapur's entropy at 4, 6, 8, 10, and 12 levels.

    In this subsection, the proposed method is further compared with some improved algorithms, including MABC, IDSA, WOA_TH, and BDE. PSNR and FSIM are utilized for analysis.

    For visual analysis, the PSNR values obtained are represented as a line graph in Figures 8 and 9. From the figures we can observe that the MALO based method gives the higher values in general, which indicates that the segmented image is similar to the original image. For example, in the circumstance of "Flower" image through Otsu technique (for K = 12), the PSNR values are 29.5819, 29.4498, 29.3192, 29.6828, and 30.7280 for MABC, IDSA, WOA_TH, BDE, and PSO, respectively. It also can be seen that all algorithms give the similar results when the number of thresholds is small (such as K = 4). Whereas, when the number of thresholds increase, the difference between algorithms becomes greater and the MALO based method outperforms the others. On comparing the FSIM values, which are given in Figures 10 and 11, it can be observed that the values increase as the number of the thresholds increase. In the circumstance of "Temple", "Flower", "Mountain", "Tree", "Bridge", "Pilot", and "Dog" images through Otsu technique (for K = 12), the proposed algorithm is not the best. However, the proposed method gives the highest values on most cases through Kapur's entropy (for K = 12). These results indicate the precise search ability of MALO based method, which is suitable for color image segmentation.

    Figure 8.  Comparison of PSNR values for different algorithms using Otsu at 4, 6, 8, 10, and 12 levels.
    Figure 9.  Comparison of PSNR values for different algorithms using Kapur's entropy at 4, 6, 8, 10, and 12 levels.
    Figure 10.  Comparison of FSIM values for different algorithms using Otsu at 4, 6, 8, 10, and 12 levels.
    Figure 11.  Comparison of FSIM values for different algorithms using Kapur's entropy at 4, 6, 8, 10, and 12 levels.

    In this paper, an ant lion optimizer algorithm based on opposition-based learning for multilevel thresholding color image segmentation is proposed. Among many thresholding segmentation methods, Otsu and Kapur's entropy are adopted. The proposed algorithm is used to find the optimal threshold for 10 color test images. IEEE CEC2017 benchmark functions are performed to verify the performance of the proposed algorithm. Furthermore, 7 traditional algorithms and 4 improved algorithms are selected for comparisons. The fitness value, PSNR, SSIM, FSIM, and computational time are used to evaluate the quality of segmentation. By the convergence curve and boxplot at K = 12, it can be seen that MALO algorithm can find larger objective function value more times at nearly the 100th iteration. In terms of PSNR, SSIM, and FSIM, the value obtained by the MALO algorithm is larger than other algorithms in most cases. It concludes that the segmentation performance based on MALO algorithm is superior. To sum up, a variety of experiments fully proves that MALO algorithm has higher search accuracy and convergence speed. However, high time consumption might be considered a principle limitation of this method.

    In the future, the relevant research directions are given as follows:

    (1) Explore to introduce other strategies and hybrid other algorithms in improving the performance of the ALO algorithm.

    (2) Extend the algorithm to multi-objective problem for obtaining superior segmentation effect.

    This work was supported by the Harbin Normal University doctoral research initiation fund project (XKB202014), Sanming University introduces high-level talents to start scientific research funding support project (20YG14), Guiding science and technology projects in Sanming City (2020-G-61), Educational research projects of young and middle-aged teachers in Fujian Province (JAT200618), Scientific research and development fund of Sanming University (B202009).

    All authors declare no conflicts of interest in this paper.

    Table A1.  The main notations involved in this paper.
    Provenance Symbols Paraphrase
    Color images L The gray value
    ni The number of pixels with gray value of i
    N The total number of pixels
    p The distribution probability of gray value
    K The total number of threshold
    t The threshold
    C The class
    R, G, B The three channels of color images
    Otsu ω The probabilities of class occurrence
    μ The levels of class
    σ2 The total variance
    Kapur's entropy ψ The total entropy
    ALO X The array of random walk
    ub The upper bound of parameter
    lb The lower bound of parameter
    t The current iteration
    T The maximum of iterations
    I The ratio of boundary contraction
    Time complexity O The complexity notation
    PSNR MSE The mean square error
    SSIM R The original image
    I The segmented image
    μR,μI The average gray values of image
    σ2R,σ2I The variance of image
    σRI The covariance of image
    FSIM PC Phase congruency
    GM Gradient magnitude
    Ω The entire domain of image
    SL(x) The similarity value of each position x
    PCm(x) The phase consistency measure
    SPC(x) The similarity measure of phase consistency
    SG(x) The similarity measure of gradient magnitude

     | Show Table
    DownLoad: CSV
    Figure A1.  Convergence curves for fitness values using Otsu at 12 levels thresholding.
    Figure A2.  Convergence curves for fitness values using Kapur's entropy at 12 levels thresholding.
    Table A2.  Comparison of PSNR values obtained with each algorithm for Otsu.
    IMAGE K SSA MVO DA FPA PSO SCA ALO MALO
    Cactus 4 19.1730 19.1730 19.1730 18.7263 19.1730 18.8974 19.1344 19.1901
    6 21.4834 21.4806 21.4819 20.6216 21.0808 20.2685 21.4733 21.4849
    8 22.9129 23.0452 22.5947 21.8482 22.5738 23.0573 22.9754 23.7403
    10 23.8232 24.1443 23.9252 23.1394 23.9100 23.8865 24.0865 24.1499
    12 24.6895 25.1475 24.8778 24.9636 24.5394 25.1646 25.0007 25.2868
    Kangaroo 4 22.0643 22.0643 22.0643 20.7955 22.0643 20.4905 22.0429 22.0797
    6 24.8251 24.8350 24.5043 23.2999 24.4744 23.1015 24.8199 24.8836
    8 26.8199 27.0457 26.8403 24.3867 26.3434 24.2914 26.9047 27.0860
    10 28.1619 28.8131 28.5707 25.1187 28.1677 25.2235 28.4114 28.8186
    12 29.1767 30.0207 29.8385 27.1879 29.8151 26.9052 30.1672 30.3411
    Temple 4 17.4713 17.4707 17.4713 19.7885 17.4736 17.1516 17.4005 17.6125
    6 20.7143 19.8002 20.7137 20.7876 19.7566 18.2250 20.7661 21.4589
    8 22.0492 23.5836 22.5695 20.7664 22.5250 23.8550 23.4862 23.9977
    10 23.2619 25.2421 24.2747 23.4468 23.3367 22.7675 24.8846 25.7059
    12 26.8631 26.8151 25.5113 24.5639 24.7817 26.2330 26.4459 27.5232
    Flower 4 22.6832 22.6832 22.6832 21.9099 22.6832 22.2661 22.6832 22.6916
    6 25.1802 25.5484 25.5446 23.9499 25.2590 24.5962 25.5240 25.5506
    8 27.5586 27.3846 27.6921 25.3172 27.3576 26.1643 27.5337 27.6960
    10 28.6654 28.8544 29.0249 26.6791 28.8757 26.7323 29.1768 29.2169
    12 29.9882 30.1775 29.8010 28.1115 29.6455 27.8780 30.6120 30.7280
    Mountain 4 19.7307 19.7307 19.7307 19.1368 19.7307 19.2754 19.7277 19.7307
    6 21.8240 22.4882 22.3866 20.9344 22.1794 21.8654 22.3347 22.5039
    8 24.8724 24.1574 24.2907 22.8823 24.0400 23.4094 24.7870 24.9053
    10 25.9744 26.1368 26.1295 24.6068 25.8506 23.8109 26.0493 26.3373
    12 27.3911 26.9209 26.9014 25.3515 26.9991 25.7124 26.8751 27.4991
    Tree 4 19.9284 19.9265 19.9284 19.3506 19.9206 19.0453 19.9284 19.9364
    6 22.9219 22.9184 22.9126 21.8322 22.4339 22.4819 22.9276 22.9388
    8 25.1296 25.0004 25.0881 22.6562 24.4342 22.7555 25.1489 25.1704
    10 26.7206 26.6709 26.6389 24.1790 26.1891 24.3475 26.5608 26.7213
    12 27.5331 28.0382 27.7147 26.1871 27.2252 24.9152 27.8812 28.0724
    Horse 4 19.1095 19.1095 19.1543 18.4918 19.1095 17.8797 19.1095 19.1569
    6 22.6175 22.6343 22.6083 22.4411 22.6441 20.0880 22.5318 22.8301
    8 24.8257 24.6203 24.7383 23.2636 23.7326 22.2812 24.5913 24.8543
    10 26.7272 26.7701 26.3299 23.8301 26.2501 23.7805 26.4699 26.8845
    12 28.0067 27.6999 28.1864 25.0419 28.0623 24.4077 27.5665 28.3129
    Bridge 4 18.7684 18.7684 18.7684 18.1883 18.7684 18.3216 18.7562 18.7684
    6 21.0341 21.5192 21.5142 20.6458 21.5142 19.4138 21.0529 21.5346
    8 23.5582 22.9642 23.4355 21.6761 23.3575 20.6855 23.3521 23.7010
    10 25.0709 24.8332 25.2117 22.7421 24.8889 23.3572 25.3971 25.4265
    12 26.3616 26.8858 26.3203 25.5030 26.4849 25.2994 26.1879 27.0756
    Pilot 4 16.9918 16.9918 16.9918 16.9571 16.9915 16.9918 17.0028 17.6971
    6 19.4806 19.6603 19.3935 18.8999 19.4660 19.4742 19.4398 21.5230
    8 22.1137 21.7970 21.8114 19.8872 20.9936 20.1921 21.9259 22.4562
    10 23.3937 23.4926 22.5532 23.4677 22.5761 22.8645 23.6086 24.1912
    12 24.6032 24.8457 25.4417 23.3403 23.4735 24.3050 25.6425 25.8213
    Dog 4 19.9346 19.9569 19.9346 20.2544 19.9346 18.6387 19.9734 19.9346
    6 22.5690 22.6725 22.3348 21.6363 21.7981 20.9528 22.5891 22.6726
    8 24.3105 24.3265 24.3176 23.0185 22.9836 22.5716 24.3533 24.3548
    10 24.9193 26.0109 25.7454 24.4410 25.5648 23.1901 25.8904 26.4961
    12 26.7167 28.0094 26.3712 24.9053 26.4391 25.6498 27.6947 28.1328

     | Show Table
    DownLoad: CSV
    Table A3.  Comparison of PSNR values obtained with each algorithm for Kapur's entropy.
    IMAGE K SSA MVO DA FPA PSO SCA ALO MALO
    Cactus 4 17.1463 17.1849 17.1849 16.6326 17.1605 16.5963 17.1918 17.2250
    6 18.7054 19.5152 18.8374 17.7723 18.9734 18.9692 18.9353 20.9242
    8 20.2196 21.8061 21.8129 20.2720 20.7186 20.1477 20.8937 23.1098
    10 21.6755 23.5236 23.5035 22.9740 23.3426 23.5817 23.6783 25.6436
    12 24.5328 25.7488 24.2717 25.8229 25.6387 22.2231 25.5971 26.7329
    Kangaroo 4 18.7559 18.7559 18.7529 16.9273 18.7030 17.9415 18.7714 18.8067
    6 21.2093 21.9397 21.7227 20.3904 21.8062 20.1191 22.1098 22.3708
    8 23.8181 24.5562 23.9062 20.5802 24.5744 22.1074 24.4808 24.6322
    10 25.1196 26.0125 25.7934 25.0967 25.7309 22.8701 25.9331 26.1974
    12 26.6277 27.4952 27.4380 24.5722 27.3277 24.0530 27.2209 28.0349
    Temple 4 16.7418 18.6069 17.9079 17.7575 17.8108 16.4613 18.5579 18.6105
    6 20.3140 20.4895 20.3140 20.7483 20.5577 21.6953 20.6648 23.1506
    8 24.9708 24.0553 23.2965 22.2220 24.5715 23.2979 25.0443 25.1273
    10 25.8405 25.8930 26.0409 23.4840 26.5620 21.8980 26.5010 26.7757
    12 27.0259 26.4958 27.5263 24.8266 27.3391 24.0635 27.5766 28.4027
    Flower 4 21.4262 21.4353 21.4262 21.0771 21.4030 21.7291 21.3824 21.4046
    6 23.9954 24.0070 24.0260 22.9845 23.9935 23.7137 24.0223 24.2923
    8 25.0019 25.3825 25.3936 24.4758 25.6350 25.5636 25.5517 26.3947
    10 26.1749 27.0175 26.8094 25.4329 26.9897 26.1739 26.8538 27.6016
    12 26.8429 28.2241 27.8388 25.9058 27.9865 27.9984 27.8198 29.2750
    Mountain 4 15.7308 16.1695 16.1695 15.1291 14.6360 17.2397 14.6863 17.7501
    6 19.1293 19.7275 19.3198 20.0548 19.8595 18.9344 19.2375 20.2658
    8 22.2621 22.4482 22.2780 20.3443 22.2996 20.2389 22.1739 23.7160
    10 20.8677 25.1887 23.4748 22.1128 24.6158 22.2042 24.5972 26.2667
    12 25.4993 26.3821 26.2452 24.7312 26.5979 22.1953 26.4684 26.6949
    Tree 4 19.3878 19.4098 19.3878 19.4510 19.3660 19.0814 19.3485 19.3878
    6 21.7283 21.9982 21.9410 20.7787 21.7496 20.5382 21.9919 22.0355
    8 23.5510 23.6198 23.4812 22.0054 23.5766 22.2770 23.5404 24.2661
    10 24.8234 25.5643 25.4307 23.3183 25.4128 22.1914 25.4025 25.7360
    12 26.1558 26.7973 26.3433 23.9995 26.5906 24.8922 26.5045 26.8461
    Horse 4 18.9208 19.7557 19.0344 18.9208 19.6738 19.4317 19.5801 19.7788
    6 21.2581 21.6962 21.6519 19.7265 21.3967 19.8505 21.6610 21.6974
    8 23.8699 23.6078 24.2314 22.0431 23.2680 21.4611 23.4581 24.2427
    10 25.5023 24.5116 25.5495 23.2916 25.8501 22.6324 26.0431 26.1268
    12 26.4346 25.3050 27.0205 24.1636 27.1689 24.0270 26.9024 27.4180
    Bridge 4 17.7375 17.7101 17.7433 17.6562 17.7064 17.2277 17.7680 18.3564
    6 21.0395 21.0300 21.0468 20.0621 21.0612 19.8616 21.0352 21.1004
    8 22.8402 23.4100 23.4820 21.0220 23.3430 21.3364 23.4706 23.6124
    10 24.6074 24.9201 24.1982 23.1209 24.7082 23.6599 24.6209 25.3739
    12 25.4895 26.0580 26.3086 23.1938 26.7399 24.1204 26.4986 27.4320
    Pilot 4 15.9241 15.8597 15.9653 15.5965 15.8932 15.9792 15.9532 16.0238
    6 19.9635 19.1615 20.4713 19.5345 20.6783 20.2829 19.8317 20.7123
    8 22.5976 22.0836 22.9972 22.6697 23.0674 22.7085 22.8982 23.1598
    10 24.5888 20.7618 24.7292 23.9268 24.7256 24.0374 24.5571 24.8228
    12 25.6096 24.6046 26.7532 24.9263 25.9880 25.6817 26.4241 27.1095
    Dog 4 18.3708 18.4828 17.6137 16.0679 18.2476 18.2657 18.4844 18.2605
    6 20.0477 20.7865 20.6360 19.9191 20.6773 18.4516 20.7274 21.9672
    8 22.3956 22.5129 22.5608 22.6757 22.5483 22.5758 22.3802 24.5205
    10 23.4554 25.3079 24.3555 24.4406 25.4561 21.6361 24.8465 26.3186
    12 25.8139 26.8848 26.0117 23.2895 26.5957 23.0829 26.4860 27.2748

     | Show Table
    DownLoad: CSV
    Table A4.  Comparison of SSIM values obtained with each algorithm for Otsu.
    IMAGE K SSA MVO DA FPA PSO SCA ALO MALO
    Cactus 4 0.6001 0.6001 0.6001 0.5854 0.6015 0.6001 0.5984 0.6063
    6 0.6955 0.6961 0.6950 0.6716 0.6801 0.6568 0.6956 0.6963
    8 0.7438 0.7515 0.7268 0.7278 0.7361 0.7507 0.7487 0.7904
    10 0.7684 0.7838 0.7732 0.7495 0.7745 0.7814 0.7807 0.8391
    12 0.8012 0.8123 0.8157 0.8272 0.7927 0.8022 0.8050 0.8456
    Kangaroo 4 0.7735 0.7735 0.7735 0.7156 0.7738 0.7046 0.7725 0.7735
    6 0.8609 0.8615 0.8515 0.8179 0.8525 0.8033 0.8608 0.8627
    8 0.9018 0.9066 0.9029 0.8415 0.8958 0.8431 0.9041 0.9084
    10 0.9219 0.9325 0.9288 0.8581 0.9244 0.8658 0.9262 0.9331
    12 0.9352 0.9466 0.9426 0.9032 0.9449 0.9032 0.9474 0.9495
    Temple 4 0.5829 0.5829 0.5829 0.5906 0.5825 0.5492 0.5793 0.6798
    6 0.7234 0.6884 0.7242 0.7222 0.6836 0.6239 0.7249 0.7263
    8 0.7702 0.8149 0.7873 0.7265 0.7843 0.8102 0.8121 0.8152
    10 0.8069 0.8561 0.8329 0.7886 0.8084 0.7752 0.8480 0.8643
    12 0.8823 0.8883 0.8606 0.8254 0.8453 0.8546 0.8753 0.8917
    Flower 4 0.4655 0.4655 0.4655 0.4194 0.4655 0.4655 0.4656 0.4916
    6 0.5704 0.6806 0.6789 0.4849 0.6696 0.6800 0.6765 0.7406
    8 0.7883 0.7946 0.7974 0.6136 0.7867 0.7725 0.7911 0.8000
    10 0.8139 0.8286 0.8219 0.7771 0.8206 0.7406 0.8268 0.8294
    12 0.8364 0.8550 0.8310 0.8422 0.8372 0.8203 0.8644 0.8682
    Mountain 4 0.6987 0.6987 0.6987 0.6715 0.6987 0.6987 0.6976 0.7081
    6 0.7471 0.7758 0.7691 0.7237 0.7698 0.7761 0.7705 0.7932
    8 0.8293 0.8166 0.8127 0.7688 0.8101 0.8206 0.8311 0.8322
    10 0.8442 0.8536 0.8476 0.8254 0.8524 0.8261 0.8520 0.8603
    12 0.8682 0.8650 0.8626 0.8273 0.8731 0.8511 0.8617 0.8780
    Tree 4 0.6406 0.6410 0.6406 0.6162 0.6419 0.6406 0.6412 0.6915
    6 0.7535 0.7538 0.7535 0.6682 0.7420 0.7454 0.7538 0.7546
    8 0.7919 0.7890 0.7901 0.7176 0.7465 0.7515 0.7954 0.7960
    10 0.8229 0.8272 0.8263 0.7932 0.8190 0.8009 0.8258 0.8281
    12 0.8372 0.8505 0.8416 0.8307 0.8387 0.8142 0.8555 0.8579
    Horse 4 0.7206 0.7206 0.7203 0.6791 0.7206 0.7155 0.7201 0.7206
    6 0.7543 0.7624 0.7613 0.7617 0.7611 0.7700 0.7591 0.7744
    8 0.8102 0.8062 0.8103 0.7689 0.7945 0.7622 0.8114 0.8117
    10 0.8501 0.8510 0.8505 0.8026 0.8454 0.8162 0.8523 0.8534
    12 0.8709 0.8769 0.8739 0.8233 0.8757 0.8161 0.8686 0.8793
    Bridge 4 0.7286 0.7286 0.7286 0.7286 0.7286 0.7293 0.7280 0.7398
    6 0.8032 0.8180 0.8180 0.8022 0.8190 0.7728 0.8030 0.8193
    8 0.8626 0.8512 0.8566 0.8374 0.8604 0.8323 0.8620 0.8691
    10 0.8830 0.8909 0.8903 0.8447 0.8912 0.8886 0.8956 0.8993
    12 0.9021 0.9140 0.9031 0.8986 0.9041 0.9063 0.9087 0.9226
    Pilot 4 0.7296 0.7296 0.7296 0.7222 0.7296 0.7296 0.7299 0.7399
    6 0.7854 0.7857 0.7839 0.7540 0.7852 0.7849 0.7855 0.8224
    8 0.8420 0.8385 0.8383 0.7887 0.8218 0.7875 0.8390 0.8424
    10 0.8720 0.8651 0.8607 0.8555 0.8570 0.8401 0.8737 0.8788
    12 0.8905 0.8996 0.8951 0.8581 0.8726 0.8668 0.8947 0.9017
    Dog 4 0.7003 0.7031 0.7003 0.7003 0.7003 0.6563 0.6999 0.7428
    6 0.7700 0.7755 0.7624 0.7684 0.7514 0.7104 0.7694 0.7756
    8 0.8188 0.8190 0.8190 0.7735 0.7848 0.7632 0.8213 0.8240
    10 0.8314 0.8572 0.8510 0.8116 0.8470 0.7804 0.8544 0.8655
    12 0.8691 0.8928 0.8643 0.8246 0.8654 0.8566 0.8886 0.8948

     | Show Table
    DownLoad: CSV
    Table A5.  Comparison of SSIM values obtained with each algorithm for Kapur's entropy.
    IMAGE K SSA MVO DA FPA PSO SCA ALO MALO
    Cactus 4 0.4811 0.4831 0.4831 0.4466 0.4818 0.4497 0.4835 0.4858
    6 0.5552 0.5975 0.5613 0.5064 0.5697 0.7353 0.5657 0.5690
    8 0.6254 0.7141 0.7143 0.6989 0.6473 0.6168 0.6574 0.7681
    10 0.7156 0.7719 0.7926 0.7684 0.7661 0.8080 0.7761 0.8677
    12 0.8238 0.8537 0.7953 0.8778 0.8524 0.7282 0.8510 0.8873
    Kangaroo 4 0.6080 0.6080 0.6078 0.5032 0.6058 0.5645 0.6083 0.6116
    6 0.7320 0.7635 0.7531 0.6689 0.7565 0.6881 0.7690 0.7782
    8 0.8263 0.8498 0.8304 0.7028 0.8493 0.7534 0.8476 0.8521
    10 0.8632 0.8867 0.8798 0.8570 0.8798 0.7602 0.8843 0.8913
    12 0.8976 0.9150 0.9128 0.8380 0.9111 0.8155 0.9096 0.9254
    Temple 4 0.5367 0.6145 0.5713 0.5753 0.5657 0.5101 0.6117 0.6149
    6 0.6933 0.6996 0.6933 0.7056 0.6976 0.7261 0.7014 0.7784
    8 0.8252 0.8034 0.7796 0.7400 0.8173 0.7918 0.8318 0.8465
    10 0.8469 0.8719 0.8522 0.7703 0.8665 0.7311 0.8648 0.8787
    12 0.8733 0.8941 0.8845 0.8153 0.8796 0.8086 0.8915 0.9021
    Flower 4 0.3948 0.3985 0.3948 0.3969 0.3976 0.3976 0.3950 0.3994
    6 0.4916 0.5129 0.4916 0.4830 0.4925 0.4923 0.4917 0.5247
    8 0.5171 0.5986 0.5385 0.5047 0.5538 0.5388 0.5387 0.6431
    10 0.5589 0.6425 0.5845 0.5280 0.5968 0.5964 0.5885 0.6606
    12 0.5737 0.6445 0.6168 0.5823 0.6299 0.7444 0.6410 0.7643
    Mountain 4 0.4651 0.5563 0.5563 0.4348 0.4186 0.5804 0.4192 0.6240
    6 0.6590 0.6916 0.6673 0.7108 0.6961 0.6653 0.6674 0.7131
    8 0.7628 0.7797 0.7716 0.6980 0.7612 0.7505 0.7695 0.8259
    10 0.7035 0.8433 0.7862 0.7690 0.8408 0.8062 0.8135 0.8792
    12 0.8537 0.8681 0.8645 0.8367 0.8718 0.7863 0.8668 0.9085
    Tree 4 0.5888 0.5906 0.5888 0.6081 0.5874 0.5888 0.5866 0.6264
    6 0.6716 0.6898 0.6728 0.6909 0.6708 0.6817 0.6770 0.7219
    8 0.7080 0.7157 0.7126 0.6873 0.7171 0.7503 0.7129 0.7737
    10 0.7271 0.7594 0.7631 0.7740 0.7656 0.6862 0.7653 0.8214
    12 0.7646 0.7871 0.7772 0.7040 0.7822 0.7977 0.8101 0.8792
    Horse 4 0.6486 0.6486 0.6637 0.6911 0.6976 0.6675 0.6835 0.7070
    6 0.7287 0.7486 0.7478 0.6954 0.7414 0.7463 0.7487 0.7802
    8 0.7789 0.7930 0.7922 0.7668 0.8010 0.7618 0.8035 0.8335
    10 0.8221 0.8388 0.8247 0.7824 0.8276 0.7849 0.8376 0.8697
    12 0.8410 0.8699 0.8567 0.7938 0.8691 0.8089 0.8598 0.8979
    Bridge 4 0.6914 0.6927 0.6902 0.6790 0.6918 0.6897 0.6946 0.7176
    6 0.7909 0.7974 0.7957 0.7433 0.7926 0.7813 0.7979 0.8053
    8 0.8336 0.8532 0.8522 0.7775 0.8505 0.8427 0.8564 0.8820
    10 0.8688 0.8812 0.8598 0.8144 0.8717 0.8636 0.8878 0.9160
    12 0.8836 0.9044 0.9271 0.8634 0.9124 0.8837 0.9116 0.9393
    Pilot 4 0.7676 0.7675 0.7665 0.7440 0.7644 0.7686 0.7688 0.7512
    6 0.8059 0.8241 0.8201 0.7920 0.8220 0.8259 0.7979 0.8317
    8 0.8584 0.8617 0.8621 0.8436 0.8620 0.8585 0.8619 0.8672
    10 0.8859 0.8857 0.8839 0.8781 0.8852 0.8787 0.8908 0.8937
    12 0.9031 0.9045 0.9100 0.8703 0.9036 0.8707 0.9009 0.9124
    Dog 4 0.6534 0.6534 0.6218 0.5749 0.6510 0.6471 0.6582 0.6599
    6 0.7021 0.7305 0.7252 0.7381 0.7333 0.6472 0.7290 0.7797
    8 0.7768 0.7801 0.7867 0.8020 0.7815 0.7875 0.7823 0.8486
    10 0.8039 0.8538 0.8278 0.8369 0.8574 0.7654 0.8338 0.9002
    12 0.8576 0.8860 0.8706 0.8378 0.8754 0.8326 0.8720 0.8889

     | Show Table
    DownLoad: CSV
    Table A6.  Comparison of FSIM values obtained with each algorithm for Otsu.
    IMAGE K SSA MVO DA FPA PSO SCA ALO MALO
    Cactus 4 0.8104 0.8104 0.8104 0.7856 0.8104 0.7991 0.8103 0.8104
    6 0.8679 0.8673 0.8676 0.8305 0.8585 0.8280 0.8676 0.8681
    8 0.8967 0.8978 0.8936 0.8625 0.8912 0.8869 0.8974 0.8980
    10 0.9133 0.9153 0.9143 0.8868 0.9137 0.9029 0.9148 0.9153
    12 0.9250 0.9261 0.9264 0.9001 0.9218 0.9111 0.9272 0.9287
    Kangaroo 4 0.8293 0.8293 0.8293 0.8005 0.8297 0.7913 0.8284 0.8293
    6 0.8998 0.8999 0.8962 0.8585 0.8904 0.8642 0.9000 0.9001
    8 0.9325 0.9328 0.9325 0.8860 0.9246 0.8884 0.9330 0.9335
    10 0.9474 0.9521 0.9534 0.8914 0.9454 0.9055 0.9504 0.9541
    12 0.9607 0.9649 0.9638 0.9358 0.9594 0.9352 0.9630 0.9653
    Temple 4 0.7391 0.7391 0.7391 0.7435 0.7388 0.7130 0.7374 0.7840
    6 0.8178 0.7984 0.8181 0.8137 0.7968 0.7606 0.8189 0.8203
    8 0.8420 0.8693 0.8497 0.8270 0.8491 0.8671 0.8709 0.8722
    10 0.8628 0.8929 0.8805 0.8614 0.8615 0.8481 0.8888 0.8994
    12 0.9185 0.9135 0.8967 0.8820 0.8854 0.8994 0.9085 0.9301
    Flower 4 0.7838 0.7838 0.7838 0.7604 0.7838 0.7726 0.7838 0.7841
    6 0.8402 0.8413 0.8406 0.8177 0.8356 0.8142 0.8404 0.8418
    8 0.8829 0.8810 0.8864 0.8461 0.8790 0.8524 0.8828 0.8874
    10 0.9041 0.9100 0.9110 0.8639 0.9092 0.8791 0.9114 0.9120
    12 0.9246 0.9269 0.9191 0.8891 0.9195 0.8912 0.9333 0.9347
    Mountain 4 0.8006 0.8006 0.8006 0.7658 0.8006 0.7918 0.7999 0.8006
    6 0.8426 0.8561 0.8550 0.8225 0.8494 0.8335 0.8552 0.8563
    8 0.8893 0.8892 0.8866 0.8570 0.8824 0.8672 0.8901 0.8903
    10 0.9074 0.9094 0.9083 0.8789 0.9042 0.8793 0.9078 0.9142
    12 0.9217 0.9217 0.9214 0.8919 0.9211 0.8941 0.9182 0.9253
    Tree 4 0.8055 0.8056 0.8055 0.7873 0.8060 0.8055 0.8058 0.8166
    6 0.8562 0.8566 0.8562 0.8218 0.8479 0.8448 0.8562 0.8568
    8 0.8826 0.8825 0.8825 0.8408 0.8680 0.8423 0.8833 0.8840
    10 0.9038 0.9038 0.9041 0.8713 0.8981 0.8729 0.9026 0.9055
    12 0.9149 0.9203 0.9201 0.8984 0.9098 0.8789 0.9186 0.9208
    Horse 4 0.8217 0.8217 0.8216 0.7960 0.8217 0.8099 0.8213 0.8217
    6 0.8506 0.8504 0.8503 0.8472 0.8505 0.8388 0.8490 0.8506
    8 0.8849 0.8801 0.8848 0.8555 0.8687 0.8423 0.8827 0.8852
    10 0.9120 0.9082 0.9053 0.8773 0.9053 0.8708 0.9063 0.9122
    12 0.9269 0.9240 0.9279 0.8886 0.9254 0.8801 0.9202 0.9303
    Bridge 4 0.8399 0.8399 0.8399 0.8276 0.8399 0.8276 0.8397 0.8399
    6 0.8894 0.8971 0.8968 0.8706 0.8968 0.8613 0.8894 0.8974
    8 0.9235 0.9150 0.9223 0.8951 0.9203 0.8849 0.9202 0.9241
    10 0.9368 0.9350 0.9389 0.9098 0.9346 0.9192 0.9397 0.9398
    12 0.9478 0.9493 0.9470 0.9332 0.9469 0.9341 0.9453 0.9499
    Pilot 4 0.7854 0.7854 0.7854 0.7765 0.7854 0.7736 0.7854 0.7855
    6 0.8294 0.8260 0.8290 0.8070 0.8292 0.8290 0.8295 0.8345
    8 0.8623 0.8623 0.8619 0.8278 0.8531 0.8277 0.8617 0.8625
    10 0.8890 0.8819 0.8829 0.8710 0.8788 0.8547 0.8898 0.8918
    12 0.9033 0.9122 0.9079 0.8714 0.8905 0.8787 0.9101 0.9148
    Dog 4 0.7911 0.7918 0.7911 0.7911 0.7911 0.7584 0.7911 0.7943
    6 0.8497 0.8519 0.8467 0.8274 0.8347 0.8092 0.8494 0.8521
    8 0.8822 0.8793 0.8823 0.8436 0.8571 0.8452 0.8827 0.8834
    10 0.8932 0.9052 0.9049 0.8720 0.9002 0.8584 0.9050 0.9109
    12 0.9147 0.9277 0.9127 0.8882 0.9109 0.8965 0.9235 0.9288

     | Show Table
    DownLoad: CSV
    Table A7.  Comparison of FSIM values obtained with each algorithm for Kapur's entropy.
    IMAGE K SSA MVO DA FPA PSO SCA ALO MALO
    Cactus 4 0.7694 0.7700 0.7700 0.7508 0.7701 0.7453 0.7708 0.7711
    6 0.8213 0.8263 0.8232 0.7858 0.8269 0.8315 0.8248 0.8363
    8 0.8598 0.8767 0.8766 0.8257 0.8672 0.8361 0.8674 0.8924
    10 0.8791 0.9048 0.8995 0.8791 0.9021 0.8787 0.9049 0.9227
    12 0.9164 0.9290 0.9154 0.9140 0.9278 0.8735 0.9260 0.9375
    Kangaroo 4 0.7539 0.7539 0.7536 0.6738 0.7522 0.7172 0.7549 0.7574
    6 0.8466 0.8609 0.8550 0.7787 0.8574 0.8118 0.8674 0.8713
    8 0.9112 0.9218 0.9113 0.8341 0.9214 0.8522 0.9196 0.9231
    10 0.9366 0.9456 0.9430 0.9110 0.9427 0.8605 0.9468 0.9482
    12 0.9543 0.9617 0.9609 0.9105 0.9617 0.8950 0.9596 0.9632
    Temple 4 0.7190 0.7590 0.7310 0.7199 0.7282 0.6860 0.7570 0.7591
    6 0.8107 0.8139 0.8107 0.7906 0.8129 0.7971 0.8111 0.8537
    8 0.8954 0.8796 0.8681 0.8172 0.8891 0.8519 0.8990 0.9067
    10 0.9103 0.9290 0.9146 0.8471 0.9256 0.7991 0.9226 0.9299
    12 0.9293 0.9389 0.9386 0.8743 0.9315 0.8680 0.9425 0.9501
    Flower 4 0.7495 0.7505 0.7495 0.7293 0.7507 0.7504 0.7505 0.7508
    6 0.8086 0.8097 0.8101 0.7886 0.8096 0.8024 0.8095 0.8202
    8 0.8317 0.8419 0.8411 0.8211 0.8494 0.8519 0.8464 0.8705
    10 0.8605 0.8796 0.8741 0.8586 0.8784 0.8538 0.8769 0.8935
    12 0.8736 0.9073 0.8994 0.8478 0.9015 0.8888 0.8969 0.9255
    Mountain 4 0.7490 0.7600 0.7600 0.7470 0.7390 0.7640 0.7385 0.7857
    6 0.8040 0.8101 0.8111 0.7933 0.8088 0.7753 0.8046 0.8142
    8 0.8467 0.8612 0.8539 0.8003 0.8485 0.8084 0.8498 0.8765
    10 0.8444 0.8899 0.8723 0.8368 0.8834 0.8370 0.8810 0.9131
    12 0.8988 0.9099 0.9081 0.8771 0.9113 0.8453 0.9067 0.9313
    Tree 4 0.7803 0.7816 0.7803 0.7881 0.7804 0.7947 0.7800 0.7803
    6 0.8303 0.8366 0.8311 0.8372 0.8304 0.8367 0.8340 0.8398
    8 0.8575 0.8602 0.8583 0.8362 0.8606 0.8490 0.8586 0.8795
    10 0.8741 0.8850 0.8855 0.8588 0.8862 0.8377 0.8889 0.8985
    12 0.8962 0.8987 0.8983 0.8545 0.9015 0.8627 0.9035 0.9141
    Horse 4 0.7725 0.7725 0.7844 0.7942 0.8057 0.7902 0.7952 0.8125
    6 0.8344 0.8467 0.8465 0.8092 0.8422 0.8260 0.8479 0.8604
    8 0.8722 0.8784 0.8781 0.8486 0.8800 0.8444 0.8832 0.8946
    10 0.8977 0.9053 0.9011 0.8600 0.9005 0.8459 0.9058 0.9087
    12 0.9126 0.9234 0.9201 0.8674 0.9186 0.8707 0.9207 0.9240
    Bridge 4 0.8220 0.8221 0.8219 0.8042 0.8221 0.8083 0.8234 0.8378
    6 0.8894 0.8909 0.8908 0.8475 0.8897 0.8495 0.8917 0.8928
    8 0.9137 0.9215 0.9209 0.8719 0.9208 0.8902 0.9215 0.9224
    10 0.9317 0.9350 0.9277 0.8925 0.9313 0.9038 0.9353 0.9467
    12 0.9394 0.9567 0.9453 0.9113 0.9503 0.9190 0.9476 0.9580
    Pilot 4 0.7901 0.7894 0.7893 0.7740 0.7887 0.7850 0.7874 0.7912
    6 0.8303 0.8409 0.8326 0.8103 0.8337 0.8292 0.8284 0.8343
    8 0.8726 0.8726 0.8749 0.8554 0.8755 0.8649 0.8751 0.8758
    10 0.8991 0.8872 0.8983 0.8829 0.8984 0.8782 0.9023 0.9063
    12 0.9158 0.9158 0.9225 0.8776 0.9177 0.8890 0.9175 0.9237
    Dog 4 0.7595 0.7594 0.7375 0.7074 0.7580 0.7413 0.7621 0.7625
    6 0.8043 0.8208 0.8182 0.8037 0.8205 0.7507 0.8212 0.8490
    8 0.8582 0.8617 0.8609 0.8404 0.8615 0.8355 0.8609 0.8911
    10 0.8772 0.9033 0.8918 0.8788 0.9032 0.8278 0.8976 0.9269
    12 0.9092 0.9254 0.9151 0.8727 0.9178 0.8642 0.9187 0.9275

     | Show Table
    DownLoad: CSV
    Table A8.  Comparison of PSNR, SSIM, and FSIM values obtained with MALO for both Otsu and Kapur's entropy.
    IMAGE K PSNR SSIM FSIM
    Otsu Kapur Otsu Kapur Otsu Kapur
    Cactus 4 19.1901 17.2250 0.6063 0.4858 0.8104 0.7711
    6 21.4849 20.9242 0.6963 0.5690 0.8681 0.8363
    8 23.7403 23.1098 0.7904 0.7681 0.8980 0.8924
    10 24.1499 25.6436 0.8391 0.8677 0.9153 0.9227
    12 25.2868 26.7329 0.8456 0.8873 0.9287 0.9375
    Kangaroo 4 22.0797 18.8067 0.7735 0.6116 0.8293 0.7574
    6 24.8836 22.3708 0.8627 0.7782 0.9001 0.8713
    8 27.0860 24.6322 0.9084 0.8521 0.9335 0.9231
    10 28.8186 26.1974 0.9331 0.8913 0.9541 0.9482
    12 30.3411 28.0349 0.9495 0.9254 0.9653 0.9632
    Temple 4 17.6125 18.6105 0.6798 0.6149 0.7840 0.7591
    6 21.4589 23.1506 0.7263 0.7784 0.8203 0.8537
    8 23.9977 25.1273 0.8152 0.8465 0.8722 0.9067
    10 25.7059 26.7757 0.8643 0.8787 0.8994 0.9299
    12 27.5232 28.4027 0.8917 0.9021 0.9301 0.9501
    Flower 4 22.6916 21.4046 0.4916 0.3994 0.7841 0.7508
    6 25.5506 24.2923 0.7406 0.5247 0.8418 0.8202
    8 27.6960 26.3947 0.8000 0.6431 0.8874 0.8705
    10 29.2169 27.6016 0.8294 0.6606 0.9120 0.8935
    12 30.7280 29.2750 0.8682 0.7643 0.9347 0.9255
    Mountain 4 19.7307 17.7501 0.7081 0.6240 0.8006 0.7857
    6 22.5039 20.2658 0.7932 0.7131 0.8563 0.8142
    8 24.9053 23.7160 0.8322 0.8259 0.8903 0.8765
    10 26.3373 26.2667 0.8603 0.8792 0.9142 0.9131
    12 27.4991 26.6949 0.8780 0.9085 0.9253 0.9313
    Tree 4 19.9364 19.3878 0.6915 0.6264 0.8166 0.7803
    6 22.9388 22.0355 0.7546 0.7219 0.8568 0.8398
    8 25.1704 24.2661 0.7960 0.7737 0.8840 0.8795
    10 26.7213 25.7360 0.8281 0.8214 0.9055 0.8985
    12 28.0724 26.8461 0.8579 0.8792 0.9208 0.9141
    Horse 4 19.1569 19.7788 0.7206 0.7070 0.8217 0.8125
    6 22.8301 21.6974 0.7744 0.7802 0.8506 0.8604
    8 24.8543 24.2427 0.8117 0.8335 0.8852 0.8946
    10 26.8845 26.1268 0.8534 0.8697 0.9122 0.9087
    12 28.3129 27.4180 0.8793 0.8979 0.9303 0.9240
    Bridge 4 18.7684 18.3564 0.7398 0.7176 0.8399 0.8378
    6 21.5346 21.1004 0.8193 0.8053 0.8974 0.8928
    8 23.7010 23.6124 0.8691 0.8820 0.9241 0.9224
    10 25.4265 25.3739 0.8993 0.9160 0.9398 0.9467
    12 27.0756 27.4320 0.9226 0.9393 0.9499 0.9580
    Pilot 4 17.6971 16.0238 0.7399 0.7512 0.7855 0.7912
    6 21.5230 20.7123 0.8224 0.8317 0.8345 0.8343
    8 22.4562 23.1598 0.8424 0.8672 0.8625 0.8758
    10 24.1912 24.8228 0.8788 0.8937 0.8918 0.9063
    12 25.8213 27.1095 0.9017 0.9124 0.9148 0.9237
    Dog 4 19.9346 18.2605 0.7428 0.6599 0.7943 0.7625
    6 22.6726 21.9672 0.7756 0.7797 0.8521 0.8490
    8 24.3548 24.5205 0.8240 0.8486 0.8834 0.8911
    10 26.4961 26.3186 0.8655 0.9002 0.9109 0.9269
    12 28.1328 27.2748 0.8948 0.8889 0.9288 0.9275

     | Show Table
    DownLoad: CSV
    Table A9.  Optimal thresholds found by MALO using Otsu.
    IMAGE K R G B
    Cactus 4 48, 79,124,194 58, 90,126,187 54, 85,123,180
    6 40, 63, 85,115,155,209 50, 74, 97,121,159,212 46, 67, 88,115,146,192
    8 36, 54, 71, 89,113,144,181,225 45, 64, 82, 99,118,142,177,221 41, 58, 74, 91,112,137,165,204
    10 34, 49, 63, 77, 91,109,133,160,190,227 43, 58, 73, 87,101,115,133,159,192,228 38, 51, 64, 77, 92,111,131,153,178,214
    12 33, 46, 58, 70, 82, 95,113,134,156,182,209,235 40, 53, 66, 79, 91,102,114,129,148,173,200,232 37, 48, 60, 71, 82, 96,112,130,147,166,189,220
    Kangaroo 4 54, 87,116,155 49, 87,112,143 43, 72,103,145
    6 41, 72, 92,113,140,173 38, 73, 95,113,134,163 32, 58, 77, 99,128,163
    8 34, 62, 80, 95,111,131,156,186 32, 62, 82, 97,111,125,145,175 28, 51, 67, 82,100,122,148,180
    10 31, 56, 72, 85, 97,110,126,145,166,195 28, 55, 74, 88,100,111,123,138,156,185 23, 44, 59, 71, 84, 99,117,138,161,190
    12 24, 47, 63, 76, 87, 97,108,122,139,157,177,206 24, 47, 65, 79, 91,101,110,120,131,145,162,187 19, 37, 51, 63, 73, 84, 96,111,128,147,167,196
    Temple 4 80,116,152,207 81,111,141,178 62, 87,115,145
    6 65, 89,113,137,165,213 71, 93,115,138,165,208 53, 70, 88,107,127,151
    8 57, 75, 94,112,130,149,172,216 64, 81, 98,115,132,150,172,210 47, 61, 74, 89,104,120,138,157
    10 55, 71, 87,103,118,134,151,172,200,234 60, 74, 88,102,115,129,143,160,178,212 45, 58, 69, 81, 95,109,124,141,159,239
    12 51, 65, 78, 92,105,117,130,142,156,174,201,233 57, 70, 83, 96,108,120,133,147,162,179,201,229 42, 53, 61, 69, 79, 90,101,111,122,135,148,162
    Flower 4 51, 98,143,201 31, 69,111,168 19, 44, 75,119
    6 34, 66, 98,131,163,209 22, 47, 77,109,150,202 7, 18, 37, 58, 84,126
    8 30, 55, 79,103,129,155,182,220 10, 25, 45, 68, 92,120,159,207 6, 14, 26, 42, 59, 78,102,140
    10 25, 44, 84,104,126,149,169,192,226 10, 23, 39, 57, 76, 95,117,144,178,218 6, 14, 26, 40, 56, 73, 94,126,176,252
    12 21, 36, 53, 70, 87,104,122,141,159,177,201,232 9, 20, 33, 48, 63, 79, 95,112,133,158,187,221 5, 10, 16, 25, 36, 48, 60, 73, 90,109,139,194
    Mountain 4 50, 76,111,190 58, 91,124,190 58, 94,131,192
    6 40, 58, 76,100,135,201 48, 69, 94,118,144,204 53, 76, 97,125,149,196
    8 36, 52, 67, 82,103,130,167,221 45, 63, 79, 99,118,139,174,224 39, 59, 78, 96,121,142,157,199
    10 34, 48, 60, 71, 84,102,123,148,187,230 2, 44, 62, 78, 96,112,124,144,182,229 38, 57, 75, 88,105,125,143,156,183,224
    12 34, 47, 58, 67, 76, 88,103,119,138,161,195,230 9, 43, 58, 69, 82, 98,111,122,137,157,189,233 37, 53, 68, 79, 92,110,127,141,151,160,183,224
    Tree 4 30, 67,103,155 51,106,161,207 54,120,185,225
    6 13, 35, 65, 96,132,175 39, 72,112,152,183,216 38, 74,125,173,203,229
    8 12, 31, 52, 72, 94,116,148,185 36, 63, 98,133,161,184,207,231 30, 52, 81,119,157,186,208,231
    10 10, 23, 39, 56, 74, 94,114,139,169,197 30, 50, 73,100,127,150,169,187,208,231 28, 46, 68, 97,130,160,184,202,215,234
    12 9, 22, 37, 51, 66, 82, 97,115,136,157,181,203 28, 45, 63, 84,107,130,150,166,179,192,210,233 24, 37, 51, 69, 92,119,147,171,190,205,217,235
    Horse 4 59,100,145,193 54, 94,142,190 33, 61, 86,147
    6 49, 83,111,143,179,208 46, 78,104,139,177,203 27, 51, 72, 93,145,193
    8 42, 70, 93,114,139,169,194,215 38, 65, 89,110,137,169,193,212 23, 44, 63, 80,101,148,189,200
    10 34, 56, 77, 95,111,130,155,180,200,218 30, 51, 71, 88,103,119,143,172,194,212 18, 33, 47, 60, 72, 84, 98,123,162,194
    12 29, 48, 67, 83, 98,112,127,147,168,187,204,220 29, 46, 63, 79, 93,106,120,142,166,185,200,215 17, 31, 44, 56, 67, 78, 89,103,128,164,190,201
    Bridge 4 73,113,158,216 69,109,151,210 35, 75,116,159
    6 61, 89,116,145,180,225 61, 92,120,148,181,224 24, 51, 80,110,139,169
    8 55, 77, 99,120,142,168,198,233 52, 74, 96,118,140,165,197,233 17, 36, 58, 81,105,127,148,172
    10 50, 68, 86,104,121,139,161,184,211,239 48, 67, 86,104,122,140,160,183,211,239 13, 29, 46, 63, 81,100,119,136,153,174
    12 48, 64, 79, 95,110,125,140,158,178,199,224,246 44, 60, 76, 91,106,122,137,154,172,192,218,243 11, 25, 40, 55, 71, 88,105,121,135,149,166,182
    Pilot 4 102,149,194,224 104,157,205,235 83,123,167,220
    6 90,120,155,191,217,234 88,117,150,187,217,239 78,111,149,181,212,243
    8 80,102,127,157,187,210,225,238 81,103,127,154,185,209,225,241 66, 87,109,136,165,188,214,243
    10 77, 96,116,135,157,180,200,216,228,239 76, 95,114,134,158,185,206,220,233,246 61, 78, 96,115,137,162,181,195,217,244
    12 72, 89,105,121,138,158,180,197,212,223,232,242 72, 86,100,117,136,159,184,203,216,226,237,248 61, 77, 94,112,132,154,172,185,196,214,234,248
    Dog 4 50, 84,115,157 73,107,145,188 52, 83,123,161
    6 38, 66, 89,112,133,168 61, 84,108,136,161,193 45, 67, 93,125,156,178
    8 33, 58, 78, 97,115,130,150,184 57, 75, 93,112,135,156,171,199 42, 60, 79,102,131,157,175,193
    10 30, 52, 70, 86,102,118,132,151,183,243 53, 69, 84,100,117,136,154,167,181,207 36, 49, 64, 80, 99,122,145,163,177,196
    12 24, 42, 57, 71, 84, 97,109,121,132,147,170,197 48, 61, 73, 87,101,115,131,147,159,169,183,209 33, 44, 57, 70, 83,100,121,141,157,168,179,196

     | Show Table
    DownLoad: CSV
    Table A10.  Optimal thresholds found by MALO using Kapur's entropy.
    IMAGE K R G B
    Cactus 4 63,103,146,189 73,115,151,196 68,111,163,206
    6 58, 92,121,153,185,216 62, 92,123,151,184,215 60, 95,129,162,190,222
    8 50, 77,102,128,154,180,204,229 56, 81,106,129,152,177,202,226 19, 53, 80,106,134,163,190,221
    10 43, 63, 83,103,122,143,164,185,207,230 49, 69, 89,109,129,148,169,191,212,233 19, 48, 71, 93,115,139,163,186,208,230
    12 17, 42, 64, 83,101,120,139,159,178,197,215,234 46, 63, 80, 97,115,132,148,165,183,201,219,237 19, 42, 58, 76, 94,112,130,148,166,187,208,231
    Kangaroo 4 52,113,158,203 51, 90,138,188 40, 97,150,203
    6 43, 75,113,148,184,215 47, 83,123,153,186,220 36, 68,102,142,185,220
    8 32, 58, 84,113,141,169,198,227 35, 61, 86,113,139,168,194,220 31, 57, 84,108,136,165,193,220
    10 24, 45, 66, 90,115,138,162,186,208,231 21, 42, 63, 86,109,133,153,175,195,220 25, 47, 69, 91,114,138,161,185,207,231
    12 20, 40, 58, 78, 98,117,136,157,178,198,215,234 17, 38, 56, 75, 94,114,132,152,171,190,210,229 18, 36, 55, 74, 94,115,135,154,174,194,214,233
    Temple 4 74,114,153,192 82,120,158,195 46, 79,113,145
    6 64, 96,128,160,194,225 72,103,134,163,196,226 25, 49, 80,113,144,178
    8 40, 65, 91,116,142,166,194,225 62, 89,116,143,169,196,216,236 23, 44, 67, 89,111,133,155,178
    10 39, 60, 82,103,126,149,170,194,214,235 46, 68, 89,109,130,151,173,196,216,235 18, 31, 47, 64, 81, 99,118,137,156,183
    12 35, 51, 69, 88,106,125,142,159,176,194,213,238 41, 55, 73, 90,107,123,141,159,178,196,216,235 18, 31, 46, 63, 80, 97,111,127,144,158,178,187
    Flower 4 53, 99,143,187 49,106,153,202 27, 75,118,175
    6 42, 75,108,143,177,206 32, 69,106,140,175,211 20, 51, 82,113,145,175
    8 37, 65, 94,121,149,177,202,227 25, 54, 83,112,140,169,196,223 20, 47, 75,102,127,150,175,197
    10 28, 50, 73, 95,116,137,159,183,205,228 22, 45, 68, 92,115,138,161,184,207,230 17, 36, 55, 76, 97,116,135,155,175,197
    12 26, 46, 66, 84,102,121,140,158,176,195,214,233 20, 39, 58, 78, 98,116,136,155,175,196,216,236 14, 27, 42, 56, 71, 87,103,118,135,155,175,198
    Mountain 4 53, 89,124,156 87,138,177,218 88,132,173,215
    6 53, 91,129,168,199,232 73,103,138,172,207,241 19, 63, 95,132,173,215
    8 52, 81,107,134,162,188,216,245 51, 77,102,136,160,185,213,241 19, 46, 65, 87,109,133,173,210
    10 22, 51, 74, 97,123,147,168,192,218,245 51, 76,101,119,138,160,181,203,223,244 19, 45, 65, 87,109,131,151,173,199,227
    12 21, 40, 60, 82,103,124,145,167,185,205,224,247 48, 64, 82,101,120,137,154,172,188,206,224,244 19, 45, 65, 89,111,132,151,172,185,200,218,236
    Tree 4 51, 92,134,182 63,112,157,206 56, 99,148,192
    6 29, 63, 97,132,168,206 45, 77,110,141,170,207 44, 78,113,151,190,225
    8 25, 55, 83,110,134,162,190,218 39, 66, 94,123,152,180,206,230 38, 65, 91,118,145,170,196,225
    10 22, 43, 65, 88,111,133,155,178,198,219 33, 54, 75, 96,117,139,160,183,206,229 33, 55, 77, 99,119,140,160,182,203,225
    12 21, 42, 63, 84,108,131,149,167,183,200,218,235 29, 47, 65, 83,100,117,134,152,168,187,206,230 28, 46, 63, 81, 99,119,138,156,174,190,206,225
    Horse 4 52, 91,136,187 68,124,176,235 53,117,174,214
    6 43, 77,111,142,177,213 49, 86,126,161,193,235 35, 67,103,134,173,214
    8 35, 62, 88,115,141,169,194,222 38, 67, 96,127,156,184,211,235 30, 59, 89,114,142,173,192,214
    10 31, 55, 77, 99,123,144,167,191,213,235 32, 55, 78,102,127,150,172,193,213,235 22, 44, 64, 86,105,125,148,173,192,214
    12 27, 46, 66, 85,104,123,142,160,178,198,219,239 28, 46, 64, 82,100,120,136,156,176,195,215,235 19, 35, 51, 70, 87,103,119,136,155,173,190,214
    Bridge 4 70,113,156,199 77,129,180,227 49, 96,142,194
    6 63, 98,133,167,201,236 60, 93,126,159,193,230 32, 62, 92,122,155,194
    8 54, 80,106,132,158,184,209,236 52, 78,105,132,158,185,210,236 26, 49, 73, 97,121,146,171,195
    10 48, 70, 92,113,134,156,177,198,218,239 47, 68, 90,111,133,155,177,198,219,238 24, 45, 68, 90,112,133,155,176,194,209
    12 45, 62, 79, 97,114,132,149,167,184,201,220,239 44, 62, 80, 99,116,134,152,169,186,204,222,240 22, 40, 58, 74, 89,105,121,139,157,176,194,209
    Pilot 4 94,134,169,204 100,146,191,220 74,106,139,173
    6 81,110,139,168,197,221 81,108,135,163,192,220 41, 85,125,168,203,235
    8 72, 96,119,143,168,194,216,238 74, 98,121,145,168,191,210,231 34, 67, 92,118,144,171,203,235
    10 69, 87,106,125,144,164,183,202,220,238 70, 89,108,127,146,164,182,200,218,236 28, 42, 68, 91,115,139,163,182,205,235
    12 55, 70, 86,103,120,136,151,168,185,203,220,238 67, 82, 98,113,129,145,160,175,191,206,221,238 28, 42, 67, 88,110,130,149,168,185,205,227,245
    Dog 4 43, 92,146,187 74,112,149,192 62,102,149,200
    6 38, 73,110,145,174,206 62, 90,119,150,184,215 56, 91,124,157,195,217
    8 29, 55, 84,113,144,167,190,214 61, 87,113,138,159,184,206,233 46, 72, 97,124,152,175,196,217
    10 21, 40, 60, 80,100,120,144,167,190,214 55, 76, 99,120,140,159,182,198,215,233 18, 45, 68, 91,114,137,157,176,196,217
    12 20, 39, 57, 75, 92,110,127,144,160,179,198,217 49, 66, 82, 99,117,133,149,165,182,197,215,233 18, 39, 56, 72, 89,105,122,141,159,178,196,217

     | Show Table
    DownLoad: CSV


    [1] N. M. Zaitoun, M. J. Aqel, Survey on Image Segmentation Techniques, Procedia Comput. Sci., 65 (2015), 797-806. doi: 10.1016/j.procs.2015.09.027
    [2] M. Sridevi, C. Mala, A Survey on Monochrome Image Segmentation Methods, Procedia Technol., 6 (2012), 548-555. doi: 10.1016/j.protcy.2012.10.066
    [3] A. K. M. Khairuzzaman, S. Chaudhury, Multilevel thresholding using grey wolf optimizer for image segmentation, Expert Syst. Appl., 86 (2017), 64-76. doi: 10.1016/j.eswa.2017.04.029
    [4] J. Tang, Y. Wang, C. Huang, H. Liu, N. Al-Nabhan, Image edge detection based on singular value feature vector and gradient operator, Math. Biosci. Eng., 17 (2020), 3721-3735. doi: 10.3934/mbe.2020209
    [5] X. Song, Y. Wang, Q. Feng, Q. Wang, Improved graph cut model with features of superpixels and neighborhood patches for myocardium segmentation from ultrasound image, Infinite Study, 2019.
    [6] X. Lu, Z. You, M. Sun, J. Wu, Z. Zhang, Breast cancer mitotic cell detection using cascade convolutional neural network with U-Net, Math. Biosci. Eng., 18 (2021), 673-695. doi: 10.3934/mbe.2021036
    [7] H. Jia, K. Sun, W. Song, X. Peng, C. Lang, Y. Li, Multi-Strategy Emperor Penguin Optimizer for RGB Histogram-Based Color Satellite Image Segmentation Using Masi Entropy, IEEE Access, 7 (2019), 134448-134474. doi: 10.1109/ACCESS.2019.2942064
    [8] S. Wang, H. Jia, X. Peng, Modified salp swarm algorithm based multilevel thresholding for color image segmentation, Math. Biosci. Eng., 17 (2019), 700-724.
    [9] A. Dirami, K. Hammouche, M. Diaf, P. Siarry, Fast multilevel thresholding for image segmentation through a multiphase level set method, Signal Process., 93 (2013), 139-153. doi: 10.1016/j.sigpro.2012.07.010
    [10] E. Hamuda, M. Glavin, E. Jones, A survey of image processing techniques for plant extraction and segmentation in the field, Comput. Electron. Agric., 125 (2016), 184-199. doi: 10.1016/j.compag.2016.04.024
    [11] S. Kotte, R. K. Pullakura, S. K. Injeti, Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind driven optimization, Measurement, 130 (2018), 340-361. doi: 10.1016/j.measurement.2018.08.007
    [12] N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern., 9 (1979), 62-66. doi: 10.1109/TSMC.1979.4310076
    [13] J. N. Kapur, P. Sahoo, A. K. C. Wong, A new method for gray-level picture thresholding using the entropy of the histogram, Comput. Vis. Graph Image Process., 29 (1985), 273-285. doi: 10.1016/0734-189X(85)90125-2
    [14] A. K.Bhandari, V. K. Singh, A. Kumar, G. K. Singh, Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy, Expert Syst. Appl., 41 (2014), 3538-3560. doi: 10.1016/j.eswa.2013.10.059
    [15] M. A. E. Aziz, A. A. Ewees, A. E. Hassanien, Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation, Expert Syst. Appl., 83 (2017), 242-256. doi: 10.1016/j.eswa.2017.04.023
    [16] K. P. Baby Resma, M. S. Nair, Multilevel thresholding for image segmentation using Krill Herd Optimization algorithm, J. King Saud Univ. Comput. Inf. Sci., (2018), forthcoming.
    [17] A. Ibrahim, A. Ahmed, S. Hussein, A. E. Hassanien, Fish image segmentation using Salp Swarm Algorithm, in The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018), Springer, (2018), 42-51.
    [18] S. Ouadfel, A. Taleb-Ahmed, Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study, Expert Syst. Appl., 55 (2016), 566-584. doi: 10.1016/j.eswa.2016.02.024
    [19] M. Díaz-Cortés, N. Ortega-Sánchez, S. Hinojosa, D. Oliva, E. Cuevas, R. Rojas, et al., A multi-level thresholding method for breast thermograms analysis using Dragonfly algorithm, Infrared Phys. Technol., 93 (2018), 346-361. doi: 10.1016/j.infrared.2018.08.007
    [20] S. C. Satapathy, N. Sri Madhava Raja, V. Rajinikanth, A. S. Ashour, N. Dey, Multi-level image thresholding using Otsu and chaotic bat algorithm, Neural Comput. Appl., 29 (2018), 1285-1307. doi: 10.1007/s00521-016-2645-5
    [21] M. Salvi, F. Molinari, Multi-tissue and multi-scale approach for nuclei segmentation in H & E stained images, BioMed. Eng. OnLine., 17 (2018), 89. doi: 10.1186/s12938-018-0518-0
    [22] Y. Feng, H. Zhao, X. Li, X. Zhang, H. Li, A multi-scale 3D Otsu thresholding algorithm for medical image segmentation, Digital Signal Process., 60 (2017), 186-199. doi: 10.1016/j.dsp.2016.08.003
    [23] D. Zhao, L. Liu, F. Yu, A. A. Heidari, M. Wang, G. Liang, et al., Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy, Knowl. Based Syst., 216 (2021), 106510. doi: 10.1016/j.knosys.2020.106510
    [24] D. Zhao, L. Liu, F. Yu, A. A. Heidari, M. Wang, D. Oliva, et al., Ant colony optimization with horizontal and vertical crossover search: Fundamental visions for multi-threshold image segmentation, Expert Syst. Appl., 167 (2021), 114122. doi: 10.1016/j.eswa.2020.114122
    [25] L. He, S. Huang, An efficient krill herd algorithm for color image multilevel thresholding segmentation problem, Appl. Soft Comput., 89 (2020), 106063. doi: 10.1016/j.asoc.2020.106063
    [26] I. Hilali-Jaghdam, A. B. Ishak, S. Abdel-Khalek, A. Jamal, Quantum and classical genetic algorithms for multilevel segmentation of medical images: A comparative study, Comput. Commun., 162 (2020), 83-93. doi: 10.1016/j.comcom.2020.08.010
    [27] B. Wu, J. Zhou, X. Ji, Y. Yin, X. Shen, An ameliorated teaching-learning-based optimization algorithm based study of image segmentation for multilevel thresholding using Kapur's entropy and Otsu's between class variance, Inf. Sci., 533 (2020), 72-107. doi: 10.1016/j.ins.2020.05.033
    [28] S. Mirjalili, The Ant Lion Optimizer, Adv. Eng. Software, 83 (2015), 80-98. doi: 10.1016/j.advengsoft.2015.01.010
    [29] M. J. Hadidian-Moghaddam, S. Arabi-Nowdeh, M. Bigdeli, D. Azizian, A multi-objective optimal sizing and siting of distributed generation using ant lion optimization technique, Ain Shams Eng. J., 9 (2018), 2101-2109. doi: 10.1016/j.asej.2017.03.001
    [30] M. Raju, L. C. Saikia, N. Sinha, Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller, Int. J. Electr. Power Energy Syst., 80 (2016), 52-63. doi: 10.1016/j.ijepes.2016.01.037
    [31] P. Saxena, A. Kothari, Ant Lion Optimization algorithm to control side lobe level and null depths in linear antenna arrays, Int. J. Electron. Commun., 70 (2016), 1339-1349. doi: 10.1016/j.aeue.2016.07.008
    [32] E. Umamaheswari, S. Ganesan, M. Abirami, S. Subramanian, Cost Effective Integrated Maintenance Scheduling in Power Systems using Ant Lion Optimizer, Energy Procedia, 117 (2017), 501-508. doi: 10.1016/j.egypro.2017.05.176
    [33] P. D. P. Reddy, V. C. V. Reddy, T. G. Manohar, Ant Lion optimization algorithm for optimal sizing of renewable energy resources for loss reduction in distribution systems, J. Electr. Syst. Inf. Technol., 5 (2018), 663-680. doi: 10.1016/j.jesit.2017.06.001
    [34] D. Oliva, S. Hinojosa, M. A. Elaziz, N. Ortega-Sánchez, Context based image segmentation using antlion optimization and sine cosine algorithm, Multimedia Tools Appl., 77 (2018), 25761-25797. doi: 10.1007/s11042-018-5815-x
    [35] C. Jin, Z. Ye, L. Yan, Y. Cao, A. Zhang, L. Ma, et al., Image Segmentation Using Fuzzy C-means Optimized by Ant Lion Optimization, in 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), IEEE, (2019), 388-393.
    [36] X. Yue, H. Zhang, A Novel Industrial Image Contrast Enhancement Technique Based on an Improved Ant Lion Optimizer, Arab J. Sci. Eng., 46 (2021), 3235-3246. doi: 10.1007/s13369-020-05148-4
    [37] Z. Wu, D. Yu, X. Kang, Parameter identification of photovoltaic cell model based on improved ant lion optimizer, Energy Convers. Manage., 151 (2017), 107-115. doi: 10.1016/j.enconman.2017.08.088
    [38] K. R. Subhashini, J. K. Satapathy, Development of an Enhanced Ant Lion Optimization Algorithm and its Application in Antenna Array Synthesis, Appl. Soft Comput., 59 (2017), 153-173. doi: 10.1016/j.asoc.2017.05.007
    [39] S. K. Majhi, S. Biswal, Optimal cluster analysis using hybrid K-Means and Ant Lion Optimizer, Karbala Int. J. Mod. Sci., 4 (2018), 347-360. doi: 10.1016/j.kijoms.2018.09.001
    [40] R. Sarkhel, N. Das, A. K. Saha, M. Nasipuri, An improved Harmony Search Algorithm embedded with a novel piecewise opposition based learning algorithm, Eng. Appl. Artif. Intell., 67 (2018), 317-330. doi: 10.1016/j.engappai.2017.09.020
    [41] A. A. Ewees, M. A. Elaziz, E. H. Houssein, Improved grasshopper optimization algorithm using opposition-based learning, Expert Syst. Appl., 112 (2018), 156-172. doi: 10.1016/j.eswa.2018.06.023
    [42] M. A. Ahandani, Opposition-based learning in the shuffled bidirectional differential evolution algorithm, Swarm Evol. Comput., 26 (2016), 64-85. doi: 10.1016/j.swevo.2015.08.002
    [43] N. H. Awad, M. Z. Ali, P. N. Suganthan, Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems, in 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, (2017), 372-379.
    [44] R. Roy, S. Laha, Optimization of Stego image retaining secret information using genetic algorithm with 8-connected PSNR, Procedia Comput. Sci., 60 (2015), 468-477. doi: 10.1016/j.procs.2015.08.168
    [45] A. Tanchenko, Visual-PSNR measure of image quality, J. Visual Commun. Image Represent., 25 (2014), 874-878. doi: 10.1016/j.jvcir.2014.01.008
    [46] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612. doi: 10.1109/TIP.2003.819861
    [47] V. Bruni, D. Vitulano, An entropy based approach for SSIM speed up, Signal Process., 135 (2017), 198-209. doi: 10.1016/j.sigpro.2017.01.007
    [48] C. Li, A. C. Bovik, Content-partitioned structural similarity index for image quality assessment, Signal Process. Image Commun., 25 (2010), 517-526. doi: 10.1016/j.image.2010.03.004
    [49] L. Zhang, L. Zhang, X. Mou, D. Zhang, FSIM: A feature similarity index for image quality assessment, IEEE Trans. Image Process., 20 (2011), 2378-2386. doi: 10.1109/TIP.2011.2109730
    [50] J. John, M. S. Nair, P. R. A. Kumar, M. Wilscy, A novel approach for detection and delineation of cell nuclei using feature similarity index measure, Biocybern. Biomed. Eng., 36 (2016), 76-88. doi: 10.1016/j.bbe.2015.11.002
    [51] S. K. Dinkar, K. Deep, Opposition based Laplacian Ant Lion Optimizer, J. Comput. Sci., 23 (2017), 71-90. doi: 10.1016/j.jocs.2017.10.007
    [52] M. Wang, X. Zhao, A. A. Heidari, H. Chen, Evaluation of constraint in photovoltaic models by exploiting an enhanced ant lion optimizer, Sol. Energy, 211 (2020), 503-521. doi: 10.1016/j.solener.2020.09.080
    [53] The Berkeley Segmentation Dataset and Benchmark. Available from: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/.
    [54] H. Jia, X. Peng, W. Song, C. Lang, Z. Xing, K. Sun, Multiverse Optimization Algorithm Based on Lévy Flight Improvement for Multithreshold Color Image Segmentation, IEEE Access, 7 (2019), 32805-32844. doi: 10.1109/ACCESS.2019.2903345
    [55] A. K. M. Khairuzzaman, S. Chaudhury, Masi entropy based multilevel thresholding for image segmentation, Multimed. Tools Appl., 78 (2019), 33573-33591. doi: 10.1007/s11042-019-08117-8
    [56] A. K. Bhandari, A. Kumar, G. K. Singh, Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur's, Otsu and Tsallis functions, Expert Syst. Appl., 42 (2015), 1573-1601. doi: 10.1016/j.eswa.2014.09.049
    [57] S. Kotte, P. R. Kumar, S. K. Injeti, An efficient approach for optimal multilevel thresholding selection for gray scale images based on improved differential search algorithm, Ain Shams Eng. J., 9 (2018), 1043-1067. doi: 10.1016/j.asej.2016.06.007
    [58] V. K. Bohat, K. V. Arya, A new heuristic for multilevel thresholding of images, Expert Syst. Appl., 117 (2019), 176-203. doi: 10.1016/j.eswa.2018.08.045
    [59] A. K. Bhandari, A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation, Neural Comput. Appl., 32 (2020), 4583-4613. doi: 10.1007/s00521-018-3771-z
    [60] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67-82. doi: 10.1109/4235.585893
  • This article has been cited by:

    1. Jinhua You, Heming Jia, Di Wu, Honghua Rao, Changsheng Wen, Qingxin Liu, Laith Abualigah, Modified Artificial Gorilla Troop Optimization Algorithm for Solving Constrained Engineering Optimization Problems, 2023, 11, 2227-7390, 1256, 10.3390/math11051256
    2. Rong Zheng, Abdelazim G. Hussien, He-Ming Jia, Laith Abualigah, Shuang Wang, Di Wu, An Improved Wild Horse Optimizer for Solving Optimization Problems, 2022, 10, 2227-7390, 1311, 10.3390/math10081311
    3. Honghua Rao, Heming Jia, Di Wu, Changsheng Wen, Shanglong Li, Qingxin Liu, Laith Abualigah, A Modified Group Teaching Optimization Algorithm for Solving Constrained Engineering Optimization Problems, 2022, 10, 2227-7390, 3765, 10.3390/math10203765
    4. Shikai Wang, Honghua Rao, Changsheng Wen, Heming Jia, Di Wu, Qingxin Liu, Laith Abualigah, Improved Remora Optimization Algorithm with Mutualistic Strategy for Solving Constrained Engineering Optimization Problems, 2022, 10, 2227-9717, 2606, 10.3390/pr10122606
    5. Di Wu, Honghua Rao, Changsheng Wen, Heming Jia, Qingxin Liu, Laith Abualigah, Modified Sand Cat Swarm Optimization Algorithm for Solving Constrained Engineering Optimization Problems, 2022, 10, 2227-7390, 4350, 10.3390/math10224350
    6. Di Wu, Shuang Wang, Qingxin Liu, Laith Abualigah, Heming Jia, Navid Razmjooy, An Improved Teaching-Learning-Based Optimization Algorithm with Reinforcement Learning Strategy for Solving Optimization Problems, 2022, 2022, 1687-5273, 1, 10.1155/2022/1535957
    7. Laith Abualigah, Khaled H. Almotairi, Mohamed Abd Elaziz, Multilevel thresholding image segmentation using meta-heuristic optimization algorithms: comparative analysis, open challenges and new trends, 2022, 0924-669X, 10.1007/s10489-022-04064-4
    8. Rong Zheng, Heming Jia, Laith Abualigah, Qingxin Liu, Shuang Wang, An improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems, 2022, 19, 1551-0018, 473, 10.3934/mbe.2022023
    9. Jie Xing, Hanli Zhao, Huiling Chen, Ruoxi Deng, Lei Xiao, Boosting Whale Optimizer with Quasi-Oppositional Learning and Gaussian Barebone for Feature Selection and COVID-19 Image Segmentation, 2023, 20, 1672-6529, 797, 10.1007/s42235-022-00297-8
    10. Shuang Wang, Abdelazim G. Hussien, Heming Jia, Laith Abualigah, Rong Zheng, Enhanced Remora Optimization Algorithm for Solving Constrained Engineering Optimization Problems, 2022, 10, 2227-7390, 1696, 10.3390/math10101696
    11. Arti Tiwari, Kamanasish Bhattacharjee, Millie Pant, Jana Nowakova, Vaclav Snasel, 2022, Chapter 27, 978-3-030-84909-2, 253, 10.1007/978-3-030-84910-8_27
    12. Rong Zheng, Heming Jia, Laith Abualigah, Shuang Wang, Di Wu, An improved remora optimization algorithm with autonomous foraging mechanism for global optimization problems, 2022, 19, 1551-0018, 3994, 10.3934/mbe.2022184
    13. Jie Xing, Xinsen Zhou, Hanli Zhao, Huiling Chen, Ali Asghar Heidari, Elite levy spreading differential evolution via ABC shrink-wrap for multi-threshold segmentation of breast cancer images, 2023, 82, 17468094, 104592, 10.1016/j.bspc.2023.104592
    14. Essam H. Houssein, Doaa A. Abdelkareem, Marwa M. Emam, Mohamed Abdel Hameed, Mina Younan, An efficient image segmentation method for skin cancer imaging using improved golden jackal optimization algorithm, 2022, 149, 00104825, 106075, 10.1016/j.compbiomed.2022.106075
    15. Hongmin Chen, Zhuo Wang, Heming Jia, Xindong Zhou, Laith Abualigah, Hybrid Slime Mold and Arithmetic Optimization Algorithm with Random Center Learning and Restart Mutation, 2023, 8, 2313-7673, 396, 10.3390/biomimetics8050396
    16. D. Rasi, M. AntoBennet, P. N. Renjith, M. R. Arun, D. Vanathi, YOLO Based Deep Learning Model for Segmenting the Color Images, 2023, 11, 2347-470X, 359, 10.37391/ijeer.110217
    17. Yijie Zhang, Yuhang Cai, Adaptive dynamic self-learning grey wolf optimization algorithm for solving global optimization problems and engineering problems, 2024, 21, 1551-0018, 3910, 10.3934/mbe.2024174
    18. Laith Abualigah, Ali Diabat, Cuong-Le Thanh, Samir Khatir, Opposition-based Laplacian distribution with Prairie Dog Optimization method for industrial engineering design problems, 2023, 414, 00457825, 116097, 10.1016/j.cma.2023.116097
    19. Shuang Wang, Heming Jia, Abdelazim G Hussien, Laith Abualigah, Guanjun Lin, Hongwei Wei, Zhenheng Lin, Krishna Gopal Dhal, Boosting aquila optimizer by marine predators algorithm for combinatorial optimization, 2024, 11, 2288-5048, 37, 10.1093/jcde/qwae004
    20. Achraf Ben Miled, Mohammed Ahmed Elhossiny, Marwa Anwar Ibrahim Elghazawy, Ashraf F. A. Mahmoud, Faroug A. Abdalla, Enhanced Chaos Game Optimization for Multilevel Image Thresholding through Fitness Distance Balance Mechanism, 2024, 14, 1792-8036, 14945, 10.48084/etasr.7713
    21. Xianwen Wang, Yingyuan Yang, Minhang Nan, Guanjun Bao, Guoyuan Liang, Optimum Multilevel Thresholding for Medical Brain Images Based on Tsallis Entropy, Incorporating Bayesian Estimation and the Cauchy Distribution, 2025, 15, 2076-3417, 2355, 10.3390/app15052355
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3580) PDF downloads(185) Cited by(21)

Figures and Tables

Figures(13)  /  Tables(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog