Research article Special Issues

Traveling wave phenomena in a nonlocal dispersal predator-prey system with the Beddington-DeAngelis functional response and harvesting

  • Received: 07 October 2020 Accepted: 27 January 2021 Published: 02 February 2021
  • This paper is devoted to studying the existence and nonexistence of traveling wave solution for a nonlocal dispersal delayed predator-prey system with the Beddington-DeAngelis functional response and harvesting. By constructing the suitable upper-lower solutions and applying Schauder's fixed point theorem, we show that there exists a positive constant $ c^* $ such that the system possesses a traveling wave solution for any given $ c > c^* $. Moreover, the asymptotic behavior of traveling wave solution at infinity is obtained by the contracting rectangles method. The existence of traveling wave solution for $ c = c^* $ is established by means of Corduneanu's theorem. The nonexistence of traveling wave solution in the case of $ c < c^* $ is also discussed.

    Citation: Zhihong Zhao, Yan Li, Zhaosheng Feng. Traveling wave phenomena in a nonlocal dispersal predator-prey system with the Beddington-DeAngelis functional response and harvesting[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1629-1652. doi: 10.3934/mbe.2021084

    Related Papers:

  • This paper is devoted to studying the existence and nonexistence of traveling wave solution for a nonlocal dispersal delayed predator-prey system with the Beddington-DeAngelis functional response and harvesting. By constructing the suitable upper-lower solutions and applying Schauder's fixed point theorem, we show that there exists a positive constant $ c^* $ such that the system possesses a traveling wave solution for any given $ c > c^* $. Moreover, the asymptotic behavior of traveling wave solution at infinity is obtained by the contracting rectangles method. The existence of traveling wave solution for $ c = c^* $ is established by means of Corduneanu's theorem. The nonexistence of traveling wave solution in the case of $ c < c^* $ is also discussed.



    加载中


    [1] H. I. Freedman, Deterministic mathematical models in population ecology, Monographs and Textbooks in Pure and Applied Mathematics 57, Marcel Dekker, Inc., New York, 1980.
    [2] P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213–245. doi: 10.1093/biomet/35.3-4.213
    [3] P. H. Leslie, J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. doi: 10.1093/biomet/47.3-4.219
    [4] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925.
    [5] V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi (French) [Variations and fluctuations of a number of individuals in animal species living together, Translation by R. N. Chapman, in Animal Ecology, pp. 409–448], Mem. Acad. Lincei Ser. 6, 2 (1926), 31–113.
    [6] J. D. Murray, Mathematical Biology I: An introduction, Interdisciplinary Applied Mathematics 17, 3rd edition, Springer-Verlag, New York, 2002.
    [7] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5–60.
    [8] C. S. Holling, The functional response of invertebrate predators to prey density, Mem. Entomol. Soc. Can., 98 (1966), 1–86. doi: 10.4039/Ent981-1
    [9] J. R. Beddington, Mutual Interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331–340. doi: 10.2307/3866
    [10] D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A Model for Tropic Interaction, Ecology, 56 (1975), 881–892. doi: 10.2307/1936298
    [11] X. Guan, F. Chen, Dynamical analysis of a two species amensalism model with Beddington-DeAngelis functional response and Allee effect on the second species, Nonlinear Anal. Real World Appl., 48 (2019), 71–93. doi: 10.1016/j.nonrwa.2019.01.002
    [12] M. Haque, Existence of complex patterns in the Beddington-DeAngelis predator-prey model, Math. Biosci., 239 (2012), 179–190. doi: 10.1016/j.mbs.2012.05.006
    [13] B. S. R. V. Prasad, M. Banerjee, P. D. N. Srinivasu, Dynamics of additional food provided predator-prey system with mutually interfering predators, Math. Biosci., 246 (2013), 176–190. doi: 10.1016/j.mbs.2013.08.013
    [14] X. Sun, R. Yuan, L. Wang, Bifurcations in a diffusive predator-prey model with Beddington-DeAngelis functional response and nonselective harvesting, J. Nonlinear Sci., 29 (2019), 287–318. doi: 10.1007/s00332-018-9487-5
    [15] F. Brauer, C. Castillo-Chavez, Mathematical models in population biology and epidemiology, Texts in Applied Mathematics 40, 2nd edition, Springer, New York, 2012.
    [16] K. S. Chaudhuri, S. S. Ray, On the combined harvesting of a prey-predator system, J. Biol. Syst., 4 (1996), 373–389. doi: 10.1142/S0218339096000259
    [17] Z. Lajmiri, R. K. Ghaziani, I. Orak, Bifurcation and stability analysis of a ratio-dependent predator-prey model with predator harvesting rate, Chaos Soliton Fract., 106 (2018), 193–200. doi: 10.1016/j.chaos.2017.10.023
    [18] Y. Louartassi, A. Alla, K. Hattaf, A. Nabil, Dynamics of a predator-prey model with harvesting and reserve area for prey in the presence of competition and toxicity, J. Appl. Math. Comput., 59 (2019), 305–321. doi: 10.1007/s12190-018-1181-0
    [19] G. Dai, M. Tang, Coexistence region and global dynamics of a harvested predator-prey system, SIAM J. Appl. Math., 58 (1998), 193–210. doi: 10.1137/S0036139994275799
    [20] D. Xiao, L. S. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math., 65 (2005), 737–753. doi: 10.1137/S0036139903428719
    [21] D. Hu, H. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal. Real World Appl., 33 (2017), 58–82. doi: 10.1016/j.nonrwa.2016.05.010
    [22] W. Liu, Y. Jiang, Bifurcation of a delayed Gause predator-prey model with Michaelis-Menten type harvesting, J. Theor. Biol., 438 (2018), 116–132. doi: 10.1016/j.jtbi.2017.11.007
    [23] P. C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics 28, Springer-Verlag, New York, 1979.
    [24] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics., 7 (1937), 355–369. doi: 10.1111/j.1469-1809.1937.tb02153.x
    [25] J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Interdisciplinary Applied Mathematics 18, 3rd edition, Springer-Verlag, New York, 2003.
    [26] J. Carr, A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433–2439. doi: 10.1090/S0002-9939-04-07432-5
    [27] J. Coville, J. Dávila, S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differ. Equ., 244 (2008), 3080–3118. doi: 10.1016/j.jde.2007.11.002
    [28] S. Pan, W. -T. Li, G. Lin, Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377–392. doi: 10.1007/s00033-007-7005-y
    [29] S. Pan, Traveling wave fronts of delayed non-local diffusion systems without quasimonotonicity, J. Math. Anal. Appl., 346 (2008), 415–424. doi: 10.1016/j.jmaa.2008.05.057
    [30] Z. -X. Yu, R. Yuan, Travelling wave solutions in non-local convolution diffusive competitive-cooperative systems, IMA J. Appl. Math., 76 (2011), 493–513. doi: 10.1093/imamat/hxq048
    [31] Z. Zhao, R. Li, X. Zhao, Z. Feng, Traveling wave solutions of a nonlocal dispersal predator-prey model with spatiotemporal delay, Z. Angew. Math. Phys., 69 (2018), Art.146, 1–20.
    [32] Y. Jin, X. -Q. Zhao, Spatial dynamics of a periodic population model with dispersal, Nonlinearity, 22 (2009), 1167–1189. doi: 10.1088/0951-7715/22/5/011
    [33] W. Wang, W. B. Ma, Travelling wave solutions for a nonlocal dispersal HIV infection dynamical model, J. Math. Anal. Appl., 457 (2018), 868–889. doi: 10.1016/j.jmaa.2017.08.024
    [34] H. Cheng, R. Yuan, Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion, Discrete Contin. Dyn. Syst., 37 (2017), 5433–5454. doi: 10.3934/dcds.2017236
    [35] Z. Xu, D. Xiao, Regular traveling waves for a nonlocal diffusion equation, J. Differ. Equ., 258 (2015), 191–223. doi: 10.1016/j.jde.2014.09.008
    [36] F. -D. Dong, W. -T. Li, G. -B. Zhang, Invasion traveling wave solutions of a predator-prey model with nonlocal dispersal, Commun. Nonlinear Sci. Numer. Simul., 79 (2019), 104926. doi: 10.1016/j.cnsns.2019.104926
    [37] C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973.
    [38] G. Lin, W. -T. Li, M. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 393–414.
    [39] G. Lin, S. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to diffusive Lotka-Volterra competition models with distributed delays, J. Dyn. Differ. Equ., 26 (2014), 583–605. doi: 10.1007/s10884-014-9355-4
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2383) PDF downloads(165) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog