Citation: Jiliang Lv, Chenxi Qu, Shaofeng Du, Xinyu Zhao, Peng Yin, Ning Zhao, Shengguan Qu. Research on obstacle avoidance algorithm for unmanned ground vehicle based on multi-sensor information fusion[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1022-1039. doi: 10.3934/mbe.2021055
[1] | M. Al-Sagban, R. Dhaouadi, Neural based autonomous navigation of wheeled mobile robots, J. Autom. Mob. Robot. Intell. Syst., 10 (2016), 64–72. |
[2] | K. H. Anabi, R. Nordin, N. F. Abdullah, Database-assisted television white space technology: challenges, trends and future research directions, IEEE Access, 4 (2016), 8162–8183. doi: 10.1109/ACCESS.2016.2621178 |
[3] | D. Chwa, Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances, IEEE Trans. Fuzzy Syst., 20 (2012), 587–593. doi: 10.1109/TFUZZ.2011.2176738 |
[4] | K. Goldberg, One Robot is Robotics, Ten Robots is Automation, IEEE Trans. Autom. Sci. Eng., 13 (2016), 1418–1419. doi: 10.1109/TASE.2016.2606859 |
[5] | C. M. Luo, J. Y. Gao, X. D. Li, H. W. Mo, Q. M Jiang, Sensor-based autonomous robot navigation under unknown environments with grid map representation. 2014 IEEE Symposium on Swarm Intelligence, (2014), pp. 1–7. |
[6] | A. Mukhtar, L. Xia, T. B. Tang, Vehicle detection techniques for collision avoidance systems: A review, IEEE Trans. Intell. Transp. Syst., 16 (2015), 2318–2338. doi: 10.1109/TITS.2015.2409109 |
[7] | P. Subbash, K. T. Chong, Adaptive network fuzzy inference system based navigation controller for mobile robot, Front. Inform. Technol. Elect. Eng., 20 (2019), 141–151. doi: 10.1631/FITEE.1700206 |
[8] | C. Treesatayapun, Discrete-time direct adaptive control for robotic systems based on model-free and if–then rules operation, Int. J. Adv. Manuf. Technol., 68 (2013), 575–590. doi: 10.1007/s00170-013-4779-2 |
[9] | C.-C. Tsai, H.-L. Wu, F.-C. Tai, Y.-S. Chen, Distributed consensus formation control with collision and obstacle avoidance for uncertain networked omnidirectional multi-robot systems using fuzzy wavelet neural networks, Int. J. Fuzzy Syst., 19 (2016), 1375–1391. |
[10] | J. Savage, S. Muñoz, M. Matamoros, R. Osorio, Obstacle avoidance behaviors for mobile robots using genetic algorithms and recurrent neural networks, IFAC Proceed. Vol., 46 (2013), 141–146. |
[11] | A. Pandey, S. Kumar, K. K. Pandey, D. R. Parhi, Mobile robot navigation in unknown static environments using ANFIS controller, Perspect. Sci., 8 (2016), 421–423. doi: 10.1016/j.pisc.2016.04.094 |
[12] | C.-J. Kim, D. Chwa, Obstacle avoidance method for wheeled mobile robots using interval type-2 fuzzy neural network, IEEE Trans. Fuzzy Syst., 23 (2015), 677–687. doi: 10.1109/TFUZZ.2014.2321771 |
[13] | S. Goudarzi, N. Kama, M. H. Anisi, S. Zeadally, S. Mumtaz, Data collection using unmanned aerial vehicles for Internet of Things platforms, Comput. Electr. Eng., 75 (2019), 1–15. doi: 10.1016/j.compeleceng.2019.01.028 |
[14] | D. Z. Wan, C. S. Chin, Simulation and prototype testing of a low-cost ultrasonic distance measurement device in underwater, J. Mar. Sci. Technol., 20 (2014), 142–154. |
[15] | H. Yang, X. Fan, P. Shi, C. Hua, Nonlinear control for tracking and obstacle avoidance of a wheeled mobile robot with nonholonomic constraint, IEEE Trans. Control Syst. Technol., (2015), 1. |
[16] | A. M. Alajlan, M. M. Almasri, K. M. Elleithy, Multi-sensor based collision avoidance algorithm for mobile robot. 2015 Long Island Systems, Applications and Technology, (2015), pp. 1–6. |
[17] | Z. H. Duan, T. H. Wu, S. W. Guo, T. Shao, R. Malekian, Z. Li, Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: A review, Int. J. Adv. Manuf. Technol., 96 (2018), 803–819. doi: 10.1007/s00170-017-1474-8 |
[18] | S. W. Yoon, S.-B. Park, J. S. Kim, Kalman filter sensor fusion for mecanum wheeled automated guided vehicle localization, J. Sens., 2015 (2015), 1–7. |
[19] | B. Khaleghi, A. Khamis, F. O. Karray, S. N. Razavi, Multisensor data fusion: A review of the state-of-the-art, Inf. Fusion, 14 (2013), 28–44. doi: 10.1016/j.inffus.2011.08.001 |
[20] | M. Alatise, G. Hancke, Pose estimation of a mobile robot based on fusion of IMU data and vision data using an extended kalman filter, Sensors, 17 (2017). |
[21] | B. F. Ji, Y. Q. Li, D. Cao, C. G. Li, S. Mumtaz, D. Wang, Secrecy performance analysis of UAV assisted relay transmission for cognitive network with energy harvesting, IEEE Trans. Veh. Technol., 69 (2020), 7404–7415. doi: 10.1109/TVT.2020.2989297 |
[22] | T. Tang, T. Hong, H. H. Hong, S. Y. Ji, S. Mumtaz, M. Cheriet, An improved UAV-PHD filter-based trajectory tracking algorithm for multi-UAVs in future 5G IoT scenarios, Electronics, 8 (2019). |
[23] | Z. Y. Lin, L. L. Wang, Z. M. Han, M. Y. Fu, Distributed formation control of multi-agent systems using complex laplacian, IEEE Trans. Autom. Control, 59 (2014), 1765–1777. doi: 10.1109/TAC.2014.2309031 |
[24] | C. G. Zong, Z. J. Ji, Y. Yu, H. Shi, Research on obstacle avoidance method for mobile robot based on multisensor information fusion, Sens. Mater., 32 (2020). |
[25] | T. Tian, S. L. Sun, N. Li, Multi-sensor information fusion estimators for stochastic uncertain systems with correlated noises, Inf. Fusion, 27 (2016), 126–137. doi: 10.1016/j.inffus.2015.06.001 |
[26] | M. Almasri, K. Elleithy, A. Alajlan, Sensor fusion based model for collision free mobile robot navigation, Sensors (Basel), 16 (2015). |
[27] | A. Al-Mayyahi, W. Wang, P. Birch, Adaptive neuro-fuzzy technique for autonomous ground vehicle navigation, Robotics, 3 (2014), 349–370. doi: 10.3390/robotics3040349 |
[28] | D. Y. Qu, Y. H. Hu, Y. T. Zhang, The investigation of the obstacle avoidance for mobile robot based on the multi sensor information fusion technology, Int. J. Mater., Mecha. Manuf. (2013), 366–370. |
[29] | I. Aydin, S. B. Celebi, S. Barmada, M. Tucci, Fuzzy integral-based multi-sensor fusion for arc detection in the pantograph-catenary system, Proc. Inst. Mech. Eng. Part F-J. Rail Rapid Transit, 232 (2016), 159–170. |
[30] | H. L. Xiong, Z. Z. Mai, J. Tang, F. Hen, Robust GPS/INS/DVL navigation and positioning method using adaptive federated strong tracking filter based on weighted least square principle, IEEE Access, 7 (2019), 26168–26178. doi: 10.1109/ACCESS.2019.2897222 |
[31] | F. Xiao, B. Qin, A weighted combination method for conflicting evidence in multi-sensor data fusion, Sensors (Basel), 18 (2018). |
[32] | D. H. Li, C. Shen, X. P. Dai, X. Zhu, Z. Liang, Research on data fusion of adaptive weighted multi-source sensor, CMC-Comput. Mat. Contin., 61 (2019), 1217–1231. |
[33] | C.-H. Hsu, C.-F. Juang, Evolutionary robot wall-following control using type-2 fuzzy controller with Species-DE-Activated continuous ACO, IEEE Trans. Fuzzy Syst., 21 (2013), 100–112. doi: 10.1109/TFUZZ.2012.2202665 |
[34] | G.-D. Wu, P.-H. Huang, A vectorization-optimization-method-based type-2 fuzzy neural network for noisy data classification, IEEE Trans. Fuzzy Syst., 21 (2013), 1–15. doi: 10.1109/TFUZZ.2012.2197754 |
[35] | M. Faisal, R. Hedjar, M. Al Sulaiman, K. Al-Mutib, Fuzzy logic navigation and obstacle avoidance by a mobile robot in an unknown dynamic environment, Int. J. Adv. Robot. Syst., 10 (2013). |
[36] | D. Wu, Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons, IEEE Trans. Fuzzy Syst., 21 (2013), 80–99. doi: 10.1109/TFUZZ.2012.2201728 |
[37] | H. Boubertakh, M. Tadjine, P. Y. Glorennec, A new mobile robot navigation method using fuzzy logic and a modified Q-learning algorithm, J. Intell. Fuzzy Syst., 21 (2010), 113–119. doi: 10.3233/IFS-2010-0440 |
[38] | P. Melin, L. Astudillo, O. Castillo, F. Valdez, Optimal design of type-2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new chemical optimization paradigm, Expert Syst. Appl., 40 (2013), 3185–3195. doi: 10.1016/j.eswa.2012.12.032 |
[39] | J. R. Castro, O. Castillo, P. Melin, A. Rodríguez-Díaz, A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks, Inf. Sci., 179 (2009), 2175–2193. |