Citation: Bakhtyar Ahmed Mohammed, Muzhir Shaban Al-Ani. An efficient approach to diagnose brain tumors through deep CNN[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 851-867. doi: 10.3934/mbe.2021045
[1] | S. S. Khalsa, T. C. Hollon, R. A. Arja, Automated histologic diagnosis of CNS tumors with machine learning, CNS Oncol., 9 (2020), 56. doi: 10.2217/cns-2020-0003 |
[2] | M. Karuna, A. Joshi, Automatic detection and severity analysis of brain tumors using gui in matlab, Int. J. Res. Eng. Technol., 10 (2013), 586-594. |
[3] | Q. T. Ostrom, G. Cioffi, H. Gittleman, CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016, Neurol. Oncol., 21 (2019), 1-100. doi: 10.1093/neuonc/noy189 |
[4] | E. M. Thompson, T. Hielscher, E. Bouffet, Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: A retrospective integrated clinical and molecular analysis, Lancet Oncol., 17 (2016), 484-495. doi: 10.1016/S1470-2045(15)00581-1 |
[5] | J. P. Poonam, Review of image processing techniques for automatic detection of tumor in human brain, Int. J. Comput. Sci. Mobile Comput., 2 (2013), 117-122. |
[6] | M. M. Ghazani, A. H. Phan, Graph convolutional neural networks for analysis of EEG signals, preprint, arXiv: 2006.14540. |
[7] | R. Bayot, T. Gonalves, A survey on object classification using convolutional neural networks, Artif. Int. Rev., 53 (2015), 5455-5516. |
[8] | X. Yan, Z. Jia, Y. Ai, F. Zhang, Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation, 2015 IEEE Int. Conf. Acoust. Speech Signal Process., (2015), 947-951. |
[9] | Y. Pan, Brain tumor grading based on neural networks and convolutional neural networks, 2015 37th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., (2015), 699-702. |
[10] | F. Samadi, G. Akbarizadeh, H. Kaabi, Change detection in SAR Images using deep belief network: A new training approach based on morphological images, IET Image Process., 13 (2019), 2255-2264. doi: 10.1049/iet-ipr.2018.6248 |
[11] | A. Comelli, A. Stefano, S. Bignardi, C. Coronnello, G. Russo, M. Sabini, et al., Tissue classification to support local active delineation of brain tumors, Ann. Conf. Med. Image Understanding Anal., (2020), 3-14. |
[12] | A. Stefano, A. Comelli, V. Bravatà, S. Barone, I. Daskalovski, G. Savoca, G., et al., A preliminary PET radiomics study of brain metastases using a fully automatic segmentation method, BMC Bioinformat., 21 (2019), 1-14. |
[13] | I. Shahzadi, T. B. Tang, F. Meriadeau, A. Quyyum. CNNLSTM: Cascaded framework for brain tumour classification, IEEE-EMBS Conf. Biomed. Eng. Sci., (2018), 633-637. |
[14] | A. Çinar, M. Yildirim, Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture, Med. Hypotheses, 139 (2020), 109684. doi: 10.1016/j.mehy.2020.109684 |
[15] | M. Malathi, P. Sinthia, Brain tumour segmentation using convolutional neural network with tensor flow, Asian.Pac. J. Cancer Prev., 20 (2019), 2095-2101. doi: 10.31557/APJCP.2019.20.7.2095 |
[16] | R. Chelghoum, A. Ikhlef, A. Hameurlaine, Transfer learning using convolutional neural network architectures for brain tumor classification from MRI images, Artific. Int. Appl. Innovat., 583 (2020), 189-200. |
[17] | M. Siar, M. Teshnehlab, Brain tumor detection using deep neural network and machine learning algorithm, 9th Int. Conf. Comput. Knowl. Eng., 2019. |
[18] | T. Hossain, F. S. Shishir, M. Ashraf, Brain tumor detection using convolutional neural network. international conference on advances in science, Eng. Robot. Technol., 2019. |
[19] | T. C. Hollon, B. Pandian, A. R. Adapa, Near real-time intraoperative brain tumor diagnosis using stimulated raman histology and deep neural networks, Nat. Med., 26 (2020), 52-58. doi: 10.1038/s41591-019-0715-9 |
[20] | B. N. Mostefa, S. Rachida, A. Mohamed, K. Rostom, Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images, Comput. Methods. Programs. Biomed., 166 (2018), 39-49. doi: 10.1016/j.cmpb.2018.09.007 |
[21] | S. S. Begum, D. R. Lakshmi. Combining optimal wavelet statistical texture and recurrent neural network for tumour detection and classification over MRI, Multimed. Tools. Appl, 79 (2020), 14009-14030. doi: 10.1007/s11042-020-08643-w |
[22] | D. John, H. Elad, S. Yoram, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res., 12 (2011), 2121-2159. |
[23] | L. Sun, S. Zhang, H. Chen, L. Luo, Brain tumor segmentation and survival prediction using multimodal MRI scans with deep learning, Front. Neurosci., 16 (2019). |
[24] | T. Gupta, T. K. Gandhi, R. K. Gupta, B. K. Panigrahi, Classification of patients with tumor using MR FLAIR images, Pattern Recogn Lett., 139 (2017), 112-117. |