Citation: Chunxue Wu, Fang Yang, Yan Wu, Ren Han. Prediction of crime tendency of high-risk personnel using C5.0 decision tree empowered by particle swarm optimization[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4135-4150. doi: 10.3934/mbe.2019206
[1] | A. Mehmood, I. Natgunanathan, X. Yong, et al., Protection of big data privacy, IEEE Access, 4 (2016), 1821–1834. |
[2] | H. Cai, B. Xu, L. Jiang, et al., IoT-based big data storage systems in cloud computing: perspectives and challenges, IEEE Internet Things, 4 (2017), 75–87. |
[3] | H. Chen, W. Chung, J. J. Xu, et al., Crime data mining: A general framework and some examples, Computer, 37 (2004), 50–56. |
[4] | P. Hanchuan, L. Fuhui and D. Chris, Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy, IEEE T. Pattern Anal., 27 (2005), 1226–1238. |
[5] | Y. Liu, Z. Qin, Z. Xu, et al., Feature selection with particle swarms, Comput. Inf. Proceedings, 3314 (2004), 425–430. |
[6] | M. Agaoglu, Predicting instructor performance using data mining techniques in higher education, IEEE Access, 4 (2016), 2379–2387. |
[7] | T. Almanie, R. Mirza and E. Lor, Crime prediction based on crime types and using spatial and temporal criminal hotspots, Comput. Sci., 5 (2015), 70–89. |
[8] | S. C. Jeeva and E. B. Rajsingh, Intelligent phishing url detection using association rule mining, Hum. Cent. Comput. Inf. Sci., 6 (2016), 1–19. |
[9] | R. Sujatha and D. Ezhilmaran, A new efficient SIF-based FCIL (SIFâFCIL) mining algorithm in predicting the crime locations, J. Exp. Theor. Artif. In., 28 (2015), 561–579. |
[10] | V. Ingilevich and S. Ivanov, Crime rate prediction in the urban environment using social factors, Procedia Comput. Sci., 136 (2018), 472–478. |
[11] | M. A. Jalil, F. Mohd and N. Maizura, A comparative study to evaluate filtering methods for crime data feature selection, Procedia Comput. Sci., 116 (2017), 113–120. |
[12] | O. Kotevska, A. G. Kusne, D. V. Samarov, et al., Dynamic network model for smart city data-loss resilience case study: City-to-city network for crime analytics, IEEE Access, 5 (2017), 20524–20535. |
[13] | K. Konstantina, T. P. Exarchos, K. P. Exarchos, et al., Machine learning applications in cancer prognosis and prediction, Comput. Struct. Biot., 13 (2015), 8–17. |
[14] | C. Mao, R. Lin, C. Xu, et al., Towards a trust prediction framework for cloud services based on PSO-driven neural network, IEEE Access, 5 (2017), 2187–2199. |
[15] | S. M. Vieira, L. F. Mendonça, G. J. Farinha, et al., Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients, Appl. Soft Comput., 13 (2013), 3494–3504. |
[16] | C. Wu, C. Luo, N. Xiong, et al., A greedy deep learning method for medical disease analysis, IEEE Access, 6 (2018), 20021–20030. |
[17] | H. Wu, S. Yang, Z. Huang, et al., Type 2 diabetes mellitus prediction model based on data mining, Inform. Med. Unlocked, 10 (2018), 100–107. |
[18] | H. Li, X. Mao, C. Wu, et al., Design and analysis of a general data evaluation system based on social networks, Eurasip Wireless Commu. Netw., 1 (2018), 109–120. |
[19] | X. Meng, Y. Huang, D. Rao, et al., Comparison of three data mining models for predicting diabetes or prediabetes by risk factors, Kaohsiung Med. Sci., 29 (2013), 93–99. |
[20] | Y. Shen, C. Wu, C. Liu, et al., Oriented feature selection SVM applied to cancer prediction in precision medicine, IEEE Access, 6 (2018), 48510–48521. |
[21] | F. Han, C. Yang, Y. Wu, et al., A gene selection method for microarray data based on binary PSO encoding gene-to-class sensitivity information, IEEE/ACM Trans. Comput. Biol. Bioinformat., 14 (2017), 85–96. |
[22] | S. M. Vieira, J. Sousa and T. A. Runkler, Two cooperative ant colonies for feature selection using fuzzy models, Expert Syst. Appl., 37 (2010), 2714–2723. |
[23] | W. Ke, C. Wu, Y. Wu, et al., A new filter feature selection based on criteria fusion for gene microarray data, IEEE Access, 6 (2018), 61065–61076. |
[24] | J. Kennedy and R. C. Eberhart, A discrete binary version of the particle swarm algorithm, 1997 IEEE International Conference on Systems, Man, and Cybernetics.Computational Cybernetics and Simulation, 2002. |
[25] | S. R. Safavian and D. Landgrebe, A survey of decision tree classifier methodology, IEEE T. Syst. Man Cybern. B Cybern, 21(1991), 660–674. |
[26] | P. A. Chou, Optimal partitioning for classification and regression trees, IEEE T. Pattern Anal., 13 (1991), 340–354. |
[27] | J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc, 1992. |
[28] | H. Masnadi-Shirazi and N. Vasconcelos, Cost-Sensitive Boosting, IEEE T. Pattern Anal., 33 (2011), 294–309. |
[29] | W. Hu, W. Hu and S. Maybank, AdaBoost-based algorithm for network intrusion detection, IEEE T. Syst. Man Cybern. B Cybern, 38 (2008), 577–583. |