Citation: Paul Georgescu, Hong Zhang, Daniel Maxin. The global stability of coexisting equilibria for three models of mutualism[J]. Mathematical Biosciences and Engineering, 2016, 13(1): 101-118. doi: 10.3934/mbe.2016.13.101
[1] | N. H. AlShamrani, A. M. Elaiw . Stability of an adaptive immunity viral infection model with multi-stages of infected cells and two routes of infection. Mathematical Biosciences and Engineering, 2020, 17(1): 575-605. doi: 10.3934/mbe.2020030 |
[2] | Xinran Zhou, Long Zhang, Tao Zheng, Hong-li Li, Zhidong Teng . Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. doi: 10.3934/mbe.2020250 |
[3] | Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability for a class of functional differential equations with distributed delay and non-monotone bistable nonlinearity. Mathematical Biosciences and Engineering, 2020, 17(6): 7332-7352. doi: 10.3934/mbe.2020375 |
[4] | Andrei Korobeinikov, William T. Lee . Global asymptotic properties for a Leslie-Gower food chain model. Mathematical Biosciences and Engineering, 2009, 6(3): 585-590. doi: 10.3934/mbe.2009.6.585 |
[5] | Jinliang Wang, Jingmei Pang, Toshikazu Kuniya . A note on global stability for malaria infections model with latencies. Mathematical Biosciences and Engineering, 2014, 11(4): 995-1001. doi: 10.3934/mbe.2014.11.995 |
[6] | Yu Ji . Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences and Engineering, 2015, 12(3): 525-536. doi: 10.3934/mbe.2015.12.525 |
[7] | Miled El Hajji, Frédéric Mazenc, Jérôme Harmand . A mathematical study of a syntrophic relationship of a model of anaerobic digestion process. Mathematical Biosciences and Engineering, 2010, 7(3): 641-656. doi: 10.3934/mbe.2010.7.641 |
[8] | Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227 |
[9] | Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372 |
[10] | Tewfik Sari, Miled El Hajji, Jérôme Harmand . The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat. Mathematical Biosciences and Engineering, 2012, 9(3): 627-645. doi: 10.3934/mbe.2012.9.627 |
[1] | Comput. Math. Appl., 67 (2014), 2127-2143. |
[2] | in Evolutionary Conservation Biology (eds. R. Ferrière, U. Dieckmann and D. Couvet), Cambridge University Press, (2004), 305-326. |
[3] | Princeton University Press, Princeton, 2010. |
[4] | SIAM J. Appl. Math., 67 (2006), 337-353. |
[5] | Nonlinear Anal.: Real World Appl., 11 (2010), 3653-3665. |
[6] | Appl. Math. Comput., 219 (2013), 8496-8507. |
[7] | Appl. Math. Comput., 226 (2014), 754-764. |
[8] | Am. Nat., 113 (1979), 261-275. |
[9] | Bull. Math. Biol., 68 (2006), 1851-1872. |
[10] | J. Math. Biol., 8 (1979), 159-171. |
[11] | in Modeling and Dynamics of Infectious Diseases (eds. Z. Ma, J. Wu and Y. Zhou), Series in Contemporary Applied Mathematics (CAM), Higher Education Press, 11 (2009), 216-236. |
[12] | in Population Dynamics, Vol 3 of Encyclopedia of Ecology (eds. S.E. Jorgensen and B.D. Fath), Elsevier, (2008), 2485-2491. |
[13] | Ecology, 91 (2010), 1286-1295. |
[14] | Math. Med. Biol., 21 (2004), 75-83. |
[15] | Bull. Math. Biol., 68 (2006), 615-626. |
[16] | Math. Med. Biol., 26 (2009), 309-321. |
[17] | in Theoretical Ecology: Principles and Application (ed. R. M. May), Saunders, (1976), 78-104. |
[18] | Math. Biosci. Eng., 6 (2009), 603-610. |
[19] | Math. Biosci. Eng., 10 (2013), 369-378. |
[20] | Ecology, 88 (2007), 3004-3011. |
[21] | Forest Science, 19 (1973), 2-22. |
[22] | J. Exp. Bot., 10 (1959), 290-300. |
[23] | J. Theor. Biol., 74 (1978), 549-558. |
[24] | Appl. Math. Comput., 219 (2012), 2493-2497. |
[25] | Abstraction & Application, 9 (2013), 50-61. |
[26] | Biomatemática, 23 (2013), 139-146. |
[27] | Am. Nat., 124 (1984), 843-862. |
1. | Saikat Batabyal, Debaldev Jana, Jingjing Lyu, Rana D. Parshad, Explosive predator and mutualistic preys: A comparative study, 2020, 541, 03784371, 123348, 10.1016/j.physa.2019.123348 | |
2. | Rusliza Ahmad, Global stability of two-species mutualism model with proportional harvesting, 2017, 4, 2313626X, 74, 10.21833/ijaas.2017.07.011 | |
3. | Gabriel Dimitriu, Răzvan Ştefănescu, Ionel M. Navon, Comparative numerical analysis using reduced-order modeling strategies for nonlinear large-scale systems, 2017, 310, 03770427, 32, 10.1016/j.cam.2016.07.002 | |
4. | Paul Georgescu, Daniel Maxin, Hong Zhang, Global stability results for models of commensalism, 2017, 10, 1793-5245, 1750037, 10.1142/S1793524517500371 | |
5. | Paul Georgescu, Daniel Maxin, Laurentiu Sega, Hong Zhang, 2019, 40, 9780444641526, 85, 10.1016/bs.host.2018.09.001 | |
6. | D. Maxin, P. Georgescu, L. Sega, L. Berec, Global stability of the coexistence equilibrium for a general class of models of facultative mutualism, 2017, 11, 1751-3758, 339, 10.1080/17513758.2017.1343871 | |
7. | Ke Qi, Zhijun Liu, Lianwen Wang, Qinglong Wang, Survival and stationary distribution of a stochastic facultative mutualism model with distributed delays and strong kernels, 2021, 18, 1551-0018, 3160, 10.3934/mbe.2021157 | |
8. | Paul Georgescu, Hong Zhang, Facultative Mutualisms and θ-Logistic Growth: How Larger Exponents Promote Global Stability of Co-Existence Equilibria, 2023, 11, 2227-7390, 4373, 10.3390/math11204373 | |
9. | Paul Georgescu, Hong Zhang, Global stability of coexistence equilibria for n-species models of facultative mutualism, 2024, 00225193, 111961, 10.1016/j.jtbi.2024.111961 |