Citation: Paul Georgescu, Hong Zhang, Daniel Maxin. The global stability of coexisting equilibria for three models of mutualism[J]. Mathematical Biosciences and Engineering, 2016, 13(1): 101-118. doi: 10.3934/mbe.2016.13.101
[1] | Comput. Math. Appl., 67 (2014), 2127-2143. |
[2] | in Evolutionary Conservation Biology (eds. R. Ferrière, U. Dieckmann and D. Couvet), Cambridge University Press, (2004), 305-326. |
[3] | Princeton University Press, Princeton, 2010. |
[4] | SIAM J. Appl. Math., 67 (2006), 337-353. |
[5] | Nonlinear Anal.: Real World Appl., 11 (2010), 3653-3665. |
[6] | Appl. Math. Comput., 219 (2013), 8496-8507. |
[7] | Appl. Math. Comput., 226 (2014), 754-764. |
[8] | Am. Nat., 113 (1979), 261-275. |
[9] | Bull. Math. Biol., 68 (2006), 1851-1872. |
[10] | J. Math. Biol., 8 (1979), 159-171. |
[11] | in Modeling and Dynamics of Infectious Diseases (eds. Z. Ma, J. Wu and Y. Zhou), Series in Contemporary Applied Mathematics (CAM), Higher Education Press, 11 (2009), 216-236. |
[12] | in Population Dynamics, Vol 3 of Encyclopedia of Ecology (eds. S.E. Jorgensen and B.D. Fath), Elsevier, (2008), 2485-2491. |
[13] | Ecology, 91 (2010), 1286-1295. |
[14] | Math. Med. Biol., 21 (2004), 75-83. |
[15] | Bull. Math. Biol., 68 (2006), 615-626. |
[16] | Math. Med. Biol., 26 (2009), 309-321. |
[17] | in Theoretical Ecology: Principles and Application (ed. R. M. May), Saunders, (1976), 78-104. |
[18] | Math. Biosci. Eng., 6 (2009), 603-610. |
[19] | Math. Biosci. Eng., 10 (2013), 369-378. |
[20] | Ecology, 88 (2007), 3004-3011. |
[21] | Forest Science, 19 (1973), 2-22. |
[22] | J. Exp. Bot., 10 (1959), 290-300. |
[23] | J. Theor. Biol., 74 (1978), 549-558. |
[24] | Appl. Math. Comput., 219 (2012), 2493-2497. |
[25] | Abstraction & Application, 9 (2013), 50-61. |
[26] | Biomatemática, 23 (2013), 139-146. |
[27] | Am. Nat., 124 (1984), 843-862. |