Citation: Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś, Ewa Nizińska. Model of tumour angiogenesis -- analysis of stability with respect to delays[J]. Mathematical Biosciences and Engineering, 2013, 10(1): 19-35. doi: 10.3934/mbe.2013.10.19
[1] | Emad Attia, Marek Bodnar, Urszula Foryś . Angiogenesis model with Erlang distributed delays. Mathematical Biosciences and Engineering, 2017, 14(1): 1-15. doi: 10.3934/mbe.2017001 |
[2] | Qingfeng Tang, Guohong Zhang . Stability and Hopf bifurcations in a competitive tumour-immune system with intrinsic recruitment delay and chemotherapy. Mathematical Biosciences and Engineering, 2021, 18(3): 1941-1965. doi: 10.3934/mbe.2021101 |
[3] | Shishi Wang, Yuting Ding, Hongfan Lu, Silin Gong . Stability and bifurcation analysis of $ SIQR $ for the COVID-19 epidemic model with time delay. Mathematical Biosciences and Engineering, 2021, 18(5): 5505-5524. doi: 10.3934/mbe.2021278 |
[4] | Xin-You Meng, Yu-Qian Wu . Bifurcation analysis in a singular Beddington-DeAngelis predator-prey model with two delays and nonlinear predator harvesting. Mathematical Biosciences and Engineering, 2019, 16(4): 2668-2696. doi: 10.3934/mbe.2019133 |
[5] | Leo Turner, Andrew Burbanks, Marianna Cerasuolo . PCa dynamics with neuroendocrine differentiation and distributed delay. Mathematical Biosciences and Engineering, 2021, 18(6): 8577-8602. doi: 10.3934/mbe.2021425 |
[6] | Zhichao Jiang, Xiaohua Bi, Tongqian Zhang, B.G. Sampath Aruna Pradeep . Global Hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coefficient. Mathematical Biosciences and Engineering, 2019, 16(5): 3807-3829. doi: 10.3934/mbe.2019188 |
[7] | Xiaomeng Ma, Zhanbing Bai, Sujing Sun . Stability and bifurcation control for a fractional-order chemostat model with time delays and incommensurate orders. Mathematical Biosciences and Engineering, 2023, 20(1): 437-455. doi: 10.3934/mbe.2023020 |
[8] | Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006 |
[9] | Bruno Buonomo, Marianna Cerasuolo . The effect of time delay in plant--pathogen interactions with host demography. Mathematical Biosciences and Engineering, 2015, 12(3): 473-490. doi: 10.3934/mbe.2015.12.473 |
[10] | Yong Yao . Dynamics of a delay turbidostat system with contois growth rate. Mathematical Biosciences and Engineering, 2019, 16(1): 56-77. doi: 10.3934/mbe.2019003 |
[1] | Discrete Contin. Dyn. Syst. B, 4 (2004), 29-38. |
[2] | European J. Cancer, 41 (2005), 159-167. |
[3] | Angiogenesis, 5 (2002), 203-214. |
[4] | J. Biol. Sys., 17 (2009), 1-25. |
[5] | Funkcj. Ekvacioj, 29 (1986), 77-90. |
[6] | Math. Biosci., 191 (2004), 159-184. |
[7] | Applied Mathematics and Computation, 181 (2006), 1155-1162. |
[8] | Math. Med. Biol., 26 (2009), 63-95. |
[9] | Math. Biosci. Eng., 222 (2009), 13-26. |
[10] | Nat. Rev. Clin. Oncol., 8, 1-12. |
[11] | J. Biol. Sys., 12 (2004), 45-60. |
[12] | Math. Biosci. Eng., 2 (2005), 511-525. |
[13] | Int J Appl Math Comput Sci, 3 (2003), 395-406. |
[14] | Neoplasia, 1 (1999), 226-230. |
[15] | Cancer Res., 59 (1999), 4770-4775 (eng). |
[16] | Springer, New York, 1977. |
[17] | Springer, New York, 1993. |
[18] | Oncogene, 18 (1999), 5356-5362. |
[19] | Science, 307 (2005), 58-62 (eng). |
[20] | Academic Press Inc., 1993. |
[21] | Bull Math Biol, 56 (1994), 295-321. |
[22] | SIAM J. Control Optim., 46 (2007), 1052-1079. |
[23] | J. Theor. Biol., 252 (2008), 295-312. |
[24] | J. Math. Anal. Appl., 382 (2011), 180-203. |
[25] | Math. and Comp. Modelling, 54 (2011), 2183-2198. |
[26] | Appl. Math., 36 (2009), 333-348. |
[27] | in "Proc: IASTED Biomechanics 2006" Actapress, (2006). |
[28] | J. Cancer Mol. 4 (2008), 37-45. |
1. | Marek Bodnar, Monika Joanna Piotrowska, Stability analysis of the family of tumour angiogenesis models with distributed time delays, 2016, 31, 10075704, 124, 10.1016/j.cnsns.2015.08.002 | |
2. | Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś, Existence and stability of oscillating solutions for a class of delay differential equations, 2013, 14, 14681218, 1780, 10.1016/j.nonrwa.2012.11.010 | |
3. | Stephen Lynch, Jon Borresen, 2015, Chapter 29, 978-94-017-9715-3, 373, 10.1007/978-94-017-9716-0_29 | |
4. | Leonid Berezansky, Elena Braverman, Lev Idels, Effect of treatment on the global dynamics of delayed pathological angiogenesis models, 2014, 363, 00225193, 13, 10.1016/j.jtbi.2014.08.012 | |
5. | Stephen Lynch, 2017, Chapter 12, 978-3-319-61484-7, 257, 10.1007/978-3-319-61485-4_12 | |
6. | Urszula Foryś, Monika J. Piotrowska, Analysis of the Hopf bifurcation for the family of angiogenesis models II: The case of two nonzero unequal delays, 2013, 220, 00963003, 277, 10.1016/j.amc.2013.05.077 | |
7. | Stephen Lynch, 2018, Chapter 12, 978-3-319-78144-0, 297, 10.1007/978-3-319-78145-7_12 | |
8. | Marek Bodnar, Pilar Guerrero, Ruben Perez-Carrasco, Monika J. Piotrowska, Grant Lythe, Deterministic and Stochastic Study for a Microscopic Angiogenesis Model: Applications to the Lewis Lung Carcinoma, 2016, 11, 1932-6203, e0155553, 10.1371/journal.pone.0155553 | |
9. | Emad Attia, Marek Bodnar, Urszula Foryś, Angiogenesis model with Erlang distributed delays, 2017, 14, 1551-0018, 1, 10.3934/mbe.2017001 | |
10. | Natalia Z. Bielczyk, Katarzyna Piskała, Martyna Płomecka, Piotr Radziński, Lara Todorova, Urszula Foryś, Gennady Cymbalyuk, Time-delay model of perceptual decision making in cortical networks, 2019, 14, 1932-6203, e0211885, 10.1371/journal.pone.0211885 |