Loading [Contrib]/a11y/accessibility-menu.js

Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis

  • Received: 01 February 2010 Accepted: 29 June 2018 Published: 01 April 2011
  • MSC : Primary: 49N35; Secondary: 49K15, 92C50.

  • We describe optimal protocols for a class of mathematical models for tumor anti-angiogenesis for the problem of minimizing the tumor volume with an a priori given amount of vessel disruptive agents. The family of models is based on a biologically validated model by Hahnfeldt et al. [9] and includes a modification by Ergun et al. [6], but also provides two new variations that interpolate the dynamics for the vascular support between these existing models. The biological reasoning for the modifications of the models will be presented and we will show that despite quite different modeling assumptions, the qualitative structure of optimal controls is robust. For all the systems in the class of models considered here, an optimal singular arc is the defining element and all the syntheses of optimal controlled trajectories are qualitatively equivalent with quantitative differences easily computed.

    Citation: Heinz Schättler, Urszula Ledzewicz, Benjamin Cardwell. Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 355-369. doi: 10.3934/mbe.2011.8.355

    Related Papers:

    [1] Maria Conceição A. Leite, Yunjiao Wang . Multistability, oscillations and bifurcations in feedback loops. Mathematical Biosciences and Engineering, 2010, 7(1): 83-97. doi: 10.3934/mbe.2010.7.83
    [2] Lingli Zhou, Fengqing Fu, Yao Wang, Ling Yang . Interlocked feedback loops balance the adaptive immune response. Mathematical Biosciences and Engineering, 2022, 19(4): 4084-4100. doi: 10.3934/mbe.2022188
    [3] Dongxiang Gao, Yujun Zhang, Libing Wu, Sihan Liu . Fixed-time command filtered output feedback control for twin-roll inclined casting system with prescribed performance. Mathematical Biosciences and Engineering, 2024, 21(2): 2282-2301. doi: 10.3934/mbe.2024100
    [4] Yue Liu, Wing-Cheong Lo . Analysis of spontaneous emergence of cell polarity with delayed negative feedback. Mathematical Biosciences and Engineering, 2019, 16(3): 1392-1413. doi: 10.3934/mbe.2019068
    [5] T. J. Newman . Modeling Multicellular Systems Using Subcellular Elements. Mathematical Biosciences and Engineering, 2005, 2(3): 613-624. doi: 10.3934/mbe.2005.2.613
    [6] Akinori Awazu . Input-dependent wave propagations in asymmetric cellular automata: Possible behaviors of feed-forward loop in biological reaction network. Mathematical Biosciences and Engineering, 2008, 5(3): 419-427. doi: 10.3934/mbe.2008.5.419
    [7] Na Zhang, Jianwei Xia, Tianjiao Liu, Chengyuan Yan, Xiao Wang . Dynamic event-triggered adaptive finite-time consensus control for multi-agent systems with time-varying actuator faults. Mathematical Biosciences and Engineering, 2023, 20(5): 7761-7783. doi: 10.3934/mbe.2023335
    [8] Qiushi Wang, Hongwei Ren, Zhiping Peng, Junlin Huang . Dynamic event-triggered consensus control for nonlinear multi-agent systems under DoS attacks. Mathematical Biosciences and Engineering, 2024, 21(2): 3304-3318. doi: 10.3934/mbe.2024146
    [9] Cristina De Ambrosi, Annalisa Barla, Lorenzo Tortolina, Nicoletta Castagnino, Raffaele Pesenti, Alessandro Verri, Alberto Ballestrero, Franco Patrone, Silvio Parodi . Parameter space exploration within dynamic simulations of signaling networks. Mathematical Biosciences and Engineering, 2013, 10(1): 103-120. doi: 10.3934/mbe.2013.10.103
    [10] Hany Bauomy . Safety action over oscillations of a beam excited by moving load via a new active vibration controller. Mathematical Biosciences and Engineering, 2023, 20(3): 5135-5158. doi: 10.3934/mbe.2023238
  • We describe optimal protocols for a class of mathematical models for tumor anti-angiogenesis for the problem of minimizing the tumor volume with an a priori given amount of vessel disruptive agents. The family of models is based on a biologically validated model by Hahnfeldt et al. [9] and includes a modification by Ergun et al. [6], but also provides two new variations that interpolate the dynamics for the vascular support between these existing models. The biological reasoning for the modifications of the models will be presented and we will show that despite quite different modeling assumptions, the qualitative structure of optimal controls is robust. For all the systems in the class of models considered here, an optimal singular arc is the defining element and all the syntheses of optimal controlled trajectories are qualitatively equivalent with quantitative differences easily computed.


  • This article has been cited by:

    1. Fernando Antunes, Paula Matos Brito, Quantitative biology of hydrogen peroxide signaling, 2017, 13, 22132317, 1, 10.1016/j.redox.2017.04.039
    2. Tamar Friedlander, Roshan Prizak, Călin C. Guet, Nicholas H. Barton, Gašper Tkačik, Intrinsic limits to gene regulation by global crosstalk, 2016, 7, 2041-1723, 10.1038/ncomms12307
    3. Michał Komorowski, Dan S. Tawfik, The Limited Information Capacity of Cross-Reactive Sensors Drives the Evolutionary Expansion of Signaling, 2019, 8, 24054712, 76, 10.1016/j.cels.2018.12.006
    4. Alejandra C. Ventura, Alan Bush, Gustavo Vasen, Matías A. Goldín, Brianne Burkinshaw, Nirveek Bhattacharjee, Albert Folch, Roger Brent, Ariel Chernomoretz, Alejandro Colman-Lerner, Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range, 2014, 111, 0027-8424, E3860, 10.1073/pnas.1322761111
    5. Damon A. Clark, Raphael Benichou, Markus Meister, Rava Azeredo da Silveira, Lyle J. Graham, Dynamical Adaptation in Photoreceptors, 2013, 9, 1553-7358, e1003289, 10.1371/journal.pcbi.1003289
    6. Ilan Smoly, Haim Elbaz, Chaim Engelen, Tahel Wechsler, Gal Elbaz, Giora Ben-Ari, Alon Samach, Tamar Friedlander, John Lunn, A model estimating the level of floral transition in olive trees exposed to warm periods during winter, 2024, 0022-0957, 10.1093/jxb/erae459
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2841) PDF downloads(474) Cited by(13)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog