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Abstract. We describe optimal protocols for a class of mathematical models

for tumor anti-angiogenesis for the problem of minimizing the tumor volume
with an a priori given amount of vessel disruptive agents. The family of models

is based on a biologically validated model by Hahnfeldt et al. [9] and includes a

modification by Ergun et al. [6], but also provides two new variations that in-
terpolate the dynamics for the vascular support between these existing models.

The biological reasoning for the modifications of the models will be presented
and we will show that despite quite different modeling assumptions, the qual-

itative structure of optimal controls is robust. For all the systems in the class

of models considered here, an optimal singular arc is the defining element and
all the syntheses of optimal controlled trajectories are qualitatively equivalent

with quantitative differences easily computed.

1. Introduction. A growing tumor needs a steady supply of oxygen and nutrients
for cell duplication. Initially, during avascular growth, it is provided through the
surrounding environment. As the tumor becomes larger, these mechanisms become
inadequate and tumor cells enter the dormant stage of the cell cycle. As a con-
sequence, vascular endothelial growth factors (VEGF) are released that stimulate
the formulation of new blood vessels and capillaries in order to supply the tumor
with needed nutrients. This process is called tumor angiogenesis. Tumor anti-
angiogenesis is a treatment approach for cancer that aims at depriving the tumor of
this vasculature. Ideally, without an adequate support network, the tumor shrinks.

Anti-angiogenic treatment was already proposed in the early seventies by J. Folk-
man [7], but became medically possible only with the discovery of the inhibitory
mechanisms of the tumor in the nineties [4, 12]. It brings in external anti-angiogenic
agents to disrupt the growth of endothelial cells which form the lining of newly de-
veloping blood vessels and capillaries. Rather than targeting the fast duplicating,
genetically unstable and continuously mutating tumor cells, this indirect treatment
approach targets the genetically stable endothelial cells. As a consequence, no
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clonal resistance to angiogenic inhibitors has been observed in experimental cancer
[1]. Since developing drug resistance all too often is the limiting factor in con-
ventional chemotherapy treatments, tumor anti-angiogenesis has been called a new
hope for the treatment of tumors [13]. Although these high hopes have not been
realized in practice, there still is strong interest and active research on tumor anti-
angiogenesis as a method that normalizes the vasculature [10, 11] and thus, when
combined with traditional treatments like chemotherapy or radiotherapy, enhances
the efficiency of these procedures.

In this paper, we formulate a class of mathematical models for tumor anti-
angiogenesis as optimal control problems. Specifically, we consider the problem
of how to schedule an a priori given amount of anti-angiogenic (e.g., vessel disrup-
tive) agents in order to minimize the tumor volume. (For similar formulations with
a modified objective where the tumor volume is minimized over a fixed therapy
horizon, see the work of Swierniak et al. [23, 24].) This problem will be analyzed
for a class of mathematical models that include and are based on a model that
was developed and biologically validated by Hahnfeldt, Panigrahy, Folkman and
Hlatky [9], a group of researchers then at Harvard Medical School. The principal
state variables are the primary tumor volume, p, and the carrying capacity of the
vasculature, q. The latter is a measure for the tumor volume sustainable by the
vascular network. The dynamics describes the interactions between these variables.
The tumor volume p changes according to some growth function dependent on the
variable carrying capacity q and the q-dynamics consists of a balance of stimula-
tory and inhibitory effects. Hahnfeldt et al. carry out an asymptotic analysis of
the underlying consumption-diffusion model that leads to the form for these terms
proposed in [9] (see section 2). However, there exists some freedom in the modeling
and by now the original formulation has undergone several modifications with a
main one by Ergun, Camphausen and Wein [6]. While significant modeling changes
are made in the dynamics for the vascular support in this model, the solutions to
the optimal control problem we consider are in fact qualitatively identical. Here,
we more generally consider a family of models that in a certain sense interpolate
the dynamics for the vascular support between these two models. We show that
optimal controlled trajectories for all these models are characterized by the fact
that there exists a unique “path” in (p, q)-space along which the optimal tumor re-
ductions are realized. Optimal controls steer the system to this path as quickly as
possible (using maximum dosages) and then follow the optimal path determined by
a so-called singular arc (using specific partial dosages) until all inhibitors run out.
We compare these optimal paths for the various models.

2. Mathematical modeling. The models we consider are minimally parame-
terised and population based. They incorporate the spatial aspects of the underlying
consumption-diffusion processes that stimulate and inhibit angiogenesis into a non-
spatial 2-compartment model with the primary tumor volume, p, and its carrying
capacity, q, as variables. Intuitively, the latter defines the ideal tumor volume sus-
tainable by the vascular network. It is related to the volume of endothelial cells and
for this reason we also call it the endothelial support of the tumor for short.

The growth of the primary tumor volume p can generally be modelled in a form

ṗ = ξpF

(
p

q

)
(1)
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where ξ denotes a tumor growth parameter and F is a function of the scalar variable
x = p

q . The function F is assumed to have basic properties that reflect cell growth.

Typically F : (0,∞) → R, x 7→ F (x), satisfies F (1) = 0 and is taken to be
twice continuously differentiable and strictly decreasing. Given the definition of the
variables, these are natural conditions to impose: since q is the carrying capacity, for
p = q the endothelial support and tumor volume are balanced and thus p should not
change whereas the tumor volume should shrink for inadequate endothelial support
(p > q) and increase if ample support is available (p < q). It also is reasonable
to assume that these processes are more pronounced the smaller the quotient x
becomes. Many commonly used growth models, such as Gompertzian and logistic
growth functions, fit this description. In this paper, as in the original models in [9]
and [6], we employ a Gompertzian growth model with F (x) = − lnx. Clearly, other
growth functions like, for example, logistic models, are equally realistic. But for
the optimal control problems considered here we already vary the dynamics for the
carrying capacity of the vasculature and keeping a general model for tumor growth
leads to too broad a picture. For this reason we restrict our analysis to one specific
model here. In the original variables we thus have that

ṗ = −ξp ln

(
p

q

)
. (2)

If one defines y = ln(p), then this simply corresponds to an exponential growth
model on y with a forcing term defined by the carrying capacity q, ẏ = −ξy+ξ ln(q).
There exist classical studies in the medical literature that support this assumption
for various tumors like, for example, breast cancer [20, 21]. For this reason, and
although it clearly has shortcomings for small tumor volumes, this equation is widely
used for modeling cancer growth.

The dynamics for the carrying capacity q consists of a balance between stimula-
tory and inhibitory effects. Its basic structure can be written in the form

q̇ = S(p, q)− I(p, q)− µq (3)

where I and S, respectively, denote endogenous inhibition and stimulation terms
and the term µq that has been separated describes the net balance between endothe-
lial cell proliferation and loss to the endothelial cells through natural causes (death
etc.). These effects are small when compared with the stimulation and inhibition
exerted by the tumor and µ typically is a small constant that is set to 0 in many
models. It is included here, but with the understanding that its value is small in
absolute value. The components that define the dynamics are the functional forms
for the endogenous inhibition and stimulation terms. Hahnfeldt et al. [9] carry out
a spatial analysis of the underlying consumption-diffusion model that leads to the
following two principal conclusions for the relations between endogenous inhibition
and stimulation:

1. The inhibitor will impact endothelial cells in a way that grows like volume of
cancer cells to the power 2

3 .

The exponent 2
3 arises through the interplay of the surface of the tumor through

which the inhibitor needs to be released with the volume of endothelial cells that
mainly determine the carrying capacity q.

2. The inhibitor term tends to grow at a rate of qαpβ faster than the stimulator
term where α+ β = 2

3 .
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Based on the first conclusion in [9] the inhibitor term is taken in the form

I(p, q) = dp
2
3 q (4)

with d a constant, the “death” rate. But there exists freedom in the choice of α and
β and this has become a source for other models considered in the literature. In
the original work [9] the natural assumption is made to take the stimulation term
proportional to tumor volume,

S(p, q) = bp (5)

with b a constant, here mnemonically labelled as the “birth” rate. This corresponds
to the choice α = 1 and β = − 1

3 ( IS = d
b qp

− 1
3 ). But based on the underlying

derivation in [9] other choices are possible and, for example, taking α = 0 and
β = 2

3 results in the equally simple form

S(p, q) = bq (6)

when the stimulation is proportional to the carrying capacity. The second choice
generates a considerably simpler q-dynamics for the model in which q factors. Since
p and q are expected to be closely related in steady-state, one expects similar
behavior for these models. In [5] d’Onofrio and Gandolfi fully analyze both dynamics
with special attention to the effects of periodic treatment regimes.

A third model that more strongly makes the steady state assumption of relating
p with q was formulated by Ergun, Camphausen and Wein in [6]. In fact, identifying
p and q in the q-dynamics, in this paper the following forms are used for inhibition
and stimulation

I(q) = dq
4
3 and S(q) = bq

2
3 . (7)

This choice eliminates any p-dependence from the dynamics for the endothelial
support. The authors’ motivation for this approximation lies in a different balance
for the substitution of stimulation and inhibition that slows down the q-dynamics.
In the original model [9] this dynamics is very fast and as a result the steady-state
is reached quickly. In the modification in [6] the inhibition term is only taken
proportional to the tumor radius (the exponent 2

3 in the first conclusion of the

analysis from [9] is replaced with 1
3 ) and thus the premises of this model are no longer

consistent with the implications of the analysis in [9]. As a possible justification for

the choice bq
2
3 for the stimulation term it could be argued that the necrotic core

of the tumor does not contribute to the stimulation of the vasculature and thus
the exponent 2/3 could be interpreted as scaling down the stimulation effects from

the tumor’s volume p to its surface area p
2
3 and then, as the argument is made

in [6], replacing p with q in the steady-state analysis. The second premise of [9],
α+ β = 2

3 , is retained in the modification in [6] and, with p and q interchangeable,

this term thus becomes dq
4
3 . The main advantage of replacing p with q lies in a

significant mathematical simplification. On the other hand, this step eliminates a
direct link between tumor volume p and endothelial support q and thus the overall
consequences of this modeling change might appear drastic. Nevertheless, as we
shall see, its implications on the structure of optimal controls are not.

In this paper, we consider a formulation that interpolates between these two
approaches, i.e., as in [6] retains the exponent 1

3 to model the impact of inhibitors
on the vasculature, but does not replace p with q. This leads to the following
inhibition and stimulation terms

I(p, q) = dp
1
3 q and S(p) = bp

2
3 (8)
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Model inhibition I(p, q) stimulation S(p, q) Reference

(H1) dp
2
3 q bp [9]

(H0) dp
2
3 q bq [9, 5]

(Iθ) dp
1
3 q bpθ

(E) dq
4
3 bq

2
3 [6]

Table 1. Models for inhibition and stimulation

with I
S = d

b qp
− 1

3 which is consistent with the second premise of [9]. More generally,
however, we shall consider the stimulation term of the form

S(p) = bpθ (9)

with θ a parameter. The choice θ = 1 thus corresponds to the term chosen in [9]
while θ = 2

3 is consistent with the modification made in [6]. Note that for θ = 1

we have I
S = d

b qp
− 2

3 and thus α + β = 1
3 violating the second modeling premise of

[9]. Thus these models can be thought of as interpolating between the models of [9]
and [6]. We summarize and label the q-dynamics of all four models in Table 1.

3. Anti-angiogenic treatment as an optimal control problem. We now add
a control u that represents treatment with an anti-angiogenic agent to the model.
The variable u denotes the angiogenic dose rate and the control set U is chosen as
a compact interval, U = [0, a], with a denoting an a priori set maximum dosage.
As a first approximation we do not include pharmacokinetic equations for the anti-
angiogenic agents and thus identify the dosage of the agents with their concentration
in the plasma. Hence the effects on the carrying capacity are simply modelled by
subtracting a term γqu from the dynamics for q with the constant coefficient γ
representing the anti-angiogenic killing parameter.

One of the advantages of anti-angiogenic treatment is that there are basically
no serious side-effects. But most anti-angiogenic agents are so-called “biological
drugs” that need to be grown in a lab and hence are limited and very expensive.
The problem of how to administer a fixed amount of inhibitors to achieve the “best
possible” effect thus arises naturally. A formulation suggested by Ergun et al. in
[6] and then taken up by us in [15, 16, 17, 18] is to maximize the tumor reduction
achievable with an a priori given amount of angiogenic inhibitors,∫ T

0

u(t)dt ≤ A. (10)

Adding this isoperimetric constraint as a third variable, mathematically this be-
comes the following optimal control problem:

[OC]: For a free terminal time T , minimize the value p(T ) subject to the dy-
namics

ṗ = −ξp ln

(
p

q

)
, p(0) = p0, (11)

q̇ = S(p, q)− I(p, q)− µq − γqu, q(0) = q0, (12)

ẏ = u, y(0) = 0, (13)

over all Lebesgue measurable functions u : [0, T ]→ [0, a] for which the corre-
sponding trajectory satisfies y(T ) ≤ A.
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It is clear from the problem formulation that the variables p and q need to
be positive. For the models under consideration this indeed is satisfied for any
admissible control function (see, e.g., [5, 15, 17]) and need not be postulated as an
additional constraint. It is also clear from the dynamics for p, (1), that p increases
for p < q regardless of what control is being used. As a result, for some degenerate
initial conditions (p0, q0) it is possible that the (mathematically) optimal solution
to problem [OC] is given by T = 0. This situation arises when the amount of
available inhibitors simply is too small to reach a point that would have a lower
p-value than p0. In such a case it is not possible to decrease the tumor volume with
the available amount of inhibitors and thus the mathematically “optimal” solution
for problem [OC] simply is to do nothing and take T = 0. It is still possible to
slow down the tumor’s growth, for example, by giving the full dose u = a until all
inhibitors run out (but this need not be the best way of doing this, [17]). Hence the
formulation [OC] includes a number of subcases which we simply want to exclude
here for simplicity of presentation. We thus make the following definition.

Definition 3.1. We say the initial condition (p0, q0, A) is ill-posed for the system
under consideration if for no admissible control it is possible to reach a point (p, q)
with p < p0. In this case the optimal solution for the problem [OC] is given by
T = 0. The initial condition (p0, q0, A) is well-posed if the final time T along the
optimal control is positive.

Clearly, whether or not a given initial condition (p0, q0, A) is well-posed depends
on the specific system under consideration (growth function, inhibition and stim-
ulation terms, values of the parameters etc.). The notion of an ill-posed initial
condition is inherent to the dynamics and simply reflects the fact that inadequate
amounts of anti-angiogenic agents cannot reduce the tumor volume. If, rather than
limiting these amounts a priori as it is done in (10), this integral would be added to
the objective, then formally this issue does not arise. But for certain initial condi-
tions it nonetheless exists in the form of optimal solutions that give unrealistically
high amounts of anti-angiogenic agents. For our problem, any initial condition that
satisfies p0 ≥ q0 is well-posed and henceforth we only consider well-posed initial
conditions (p0, q0, A).

The mathematical analysis of the problem starts with the application of the Pon-
tryagin Maximum Principle (e.g., see [22, 2, 3]) which provides first-order necessary
conditions for optimality of a control u. For a row-vector λ = (λ1, λ2, λ3) ∈ (R3)∗,
define the Hamiltonian H = H(λ, p, q, u) as

H = −λ1ξp ln

(
p

q

)
+ λ2 (S(p, q)− I(p, q)− µq − γqu) + λ3u. (14)

If u∗ is an optimal control defined over the interval [0, T ] with corresponding trajec-
tory (p∗, q∗, y∗), then there exists an absolutely continuous co-vector, λ : [0, T ] →
(R3)∗, such that the following conditions hold:

(a) λ3 is constant, and λ1 and λ2 satisfy the adjoint equations

λ̇1 = −∂H
∂p

= λ1ξ

(
ln

(
p∗(t)

q∗(t)

)
+ 1

)
− λ2

(
∂S

∂p
(p∗(t), q∗(t))− ∂I

∂p
(p∗(t), q∗(t))

)
(15)

λ̇2 = −∂H
∂q

= −ξλ1
p∗(t)

q∗(t)
+ λ2

(
−∂S
∂q

(p∗(t), q∗(t)) +
∂I

∂q
(p∗(t), q∗(t)) + µ+ γu

)
(16)
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with terminal conditions

λ1(T ) = 1 and λ2(T ) = 0, (17)

(b) for almost every time t ∈ [0, T ], the optimal control u∗(t) minimizes the
Hamiltonian along (λ(t), p∗(t), q∗(t)) over the control set [0, a] with minimum value
given by 0.
Remark. Controlled trajectories for which there exists a multiplier λ such that
these conditions are satisfied are called extremals. We gave a simplified version of
the conditions of the Maximum Principle where an extra non-negative multiplier λ0
associated with the objective to be minimized is positive and has been normalized to
λ0 = 1, so-called normal extremals. In the case when λ0 = 0 (abnormal extremals),
it can easily be seen that any corresponding control must be constant, a trivial case
that need not be of any interest to us here.

Since the Hamiltonian H is linear in u, it follows that the minimizing control
typically is given by one of the boundary values u = 0 or u = a, the so-called bang
controls. Defining the switching function Φ as

Φ(t) = λ3 − λ2(t)γq∗(t), (18)

we have that

u∗(t) =

{
0 if Φ(t) > 0
a if Φ(t) < 0

. (19)

If Φ(t) = 0, then any value u ∈ [0, a] satisfies the minimum condition. However, if
Φ(t) ≡ 0 on an open interval I, then also all derivatives of Φ(t) must vanish on I and
this typically allows to compute the control. Controls of this kind are called singular
[2]. Optimal controls then need to be synthesized from these candidates through

an analysis of the switching function. For example, if Φ(τ) = 0, but Φ̇(τ) 6= 0, then

the control switches between u = 0 and u = a depending on the sign of Φ̇(τ). In
general, however, it is a challenging problem to determine the optimal structure of
concatenations between bang and singular controls.

For the models (H0) and (H1), see Table 1, considered in [9] and the modification
(E) from [6] we have given complete solutions to the optimal control problem [OC] in
the papers [15, 17, 18]. While optimal controls are bang-bang with just one switching
for the system (H0), both for the original formulation (H1) and the modification
(E) optimal controls typically start with a full dose segment, u = a, that steers
the system to an optimal singular arc, a specific curve in (p, q)-space that gives the
response to a singular control. Optimal trajectories then follow this singular arc
using the time-dependent singular control until all available anti-angiogenic agents
have been exhausted. At the end, there still is an interval corresponding to the
control u = 0 when due to after effects an additional reduction in the tumor volume
occurs until the minimum is realized as the trajectory crosses the diagonal, p = q.
Although significant modifications have been made in the modeling assumptions for
these two models, the syntheses of optimal controlled trajectories are qualitatively
identical.

Figs. 1 and 2 illustrate and compare the optimal syntheses for the models (H1)
and (E) for a set of parameter values that are taken from [9]. While the equations
that define the optimal singular arcs naturally differ (see [15, 17]), the concatenation
sequences for optimal trajectories are identical and in both cases it is the singular
arc that determines the overall optimal structures. We shall show below that this
singular arc is preserved in all the models (Iθ) and that its geometry is virtually
identical with the one for the model (H1).



362 HEINZ SCHÄTTLER, URSZULA LEDZEWICZ AND BENJAMIN CARDWELL

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

carrying capacity of the vasculature, q

tu
m

or
 v

ol
um

e,
 p

u=0 

u=a 

S 

beginning of therapy 

partial dosages along singular arc 

no dose 

endpoint − (q(T),p(T)) 

full dosage 

x * 
u 

Figure 1. Optimal synthesis for the model (H1)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

carrying capacity of the vasculature, q

tu
m

or
 v

ol
um

e,
 p

beginning of therapy

(q(T),p(T)), point where minimum is realized 

full dose 

partial dose, singular control 

no dose 

Figure 2. Optimal synthesis for the model (E)



OPTIMAL CONTROLS FOR TUMOR ANTI-ANGIOGENESIS 363

We also would like to point out that the assumption of a Gompertzian tumor
growth model in (2) is important for these structures since it guarantees the exis-
tence of the singular arc. For a classical logistic growth model it can be shown that
singular arcs do not exist [15, 23, 24] and optimal controls are bang-bang. Inter-
estingly, the number of switchings is small and even for this case the structure of
optimal controlled trajectories can be thought of as being the same one as it is given
here, but with the interpretation that the length of the singular arc has shrunk to
zero.

4. Singular control and singular arc for the models (Iθ). We write the state
of the system as z = (p, q, y)T and express the dynamics in the form

ż = f(z) + ug(z) (20)

where

f(z) =


−ξp ln

(
p
q

)
bpθ −

(
dp

1
3 + µ

)
q

0

 and g(z) =


0

−γq

1

 . (21)

In this notation, the switching function becomes the inner product of the multiplier
λ = (λ1, λ2, λ3) and the vector field g along the solution z(t), Φ(t) = 〈λ(t), g(z(t))〉.
More generally, the derivative of a function

Ψ(t) = 〈λ(t), h(z(t))〉 (22)

where h is any continuously differentiable vector field, can easily be computed di-
rectly and is given by

Ψ̇(t) = 〈λ(t), [f + ug, h](z(t))〉 , (23)

with [f, h] denoting the Lie bracket of the vector fields f and h given by

[f, h](z) = Dh(z)f(z)−Df(z)h(z) (24)

and Df the matrix of the partial derivatives of f . We therefore have that

Φ̇(t) = 〈λ(t), [f, g](z(t))〉 (25)

Φ̈(t) = 〈λ(t), [f + ug, [f, g]] (z(t))〉 (26)

and for the model (Iθ) direct calculations verify that these brackets are given by

[f, g](z) = γp


ξ

−bpθ−1

0

 , [g, [f, g]](z) = −γ2bpθ


0

1

0

 (27)

and

[f, [f, g]](z) = γpθ


ξ
(
ξp1−θ + bpq

)
θξb
(

ln
(
p
q

)
− 1
)

+ 1
3ξdp

1
3−θq − b

(
dp

1
3 + µ

)
0

 . (28)
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It is a necessary condition for minimality of the singular control, the Legendre-
Clebsch condition [2], that

〈λ(t), [g, [f, g]] (z(t))〉 ≤ 0. (29)

If this quantity is negative, i.e., if the strengthened Legendre-Clebsch condition
holds, then we can formally solve the equation Φ̈(t) ≡ 0 (see (26)) for the singular
control as

usin(t) = −〈λ(t), [f, [f, g]] (z(t))〉
〈λ(t), [g, [f, g]] (z(t))〉

. (30)

For this model we have that

〈λ(t), [g, [f, g]]z(t)〉 ≡ −γ2bpθ(t)λ2(t). (31)

The switching function Φ(t) = λ3 − λ2(t)γq∗(t) vanishes along a singular arc. It
follows that λ3 cannot vanish. For, otherwise λ2 must vanish as well and then by
(16) also λ1 vanishes identically along the singular arc. Since λ1 and λ2 are solutions
to a homogeneous linear differential equation this contradicts λ1(T ) = 1. It then
can be shown as in [17] that λ3 actually must be positive. Hence λ2 is positive
along a singular arc. Thus the strengthened Legendre-Clebsch condition is satisfied
and singular controls will be locally optimal.

The vector fields g, [f, g] and [g, [f, g]] are linearly independent everywhere and
therefore we can express the vector field [f, [f, g]] as a linear combination of this
basis, say

[f, [f, g]] (z) = a1(z)g(z) + a2(z)[f, g](z) + a3(z) [g, [f, g]] (z). (32)

Hence

〈λ(t), [f, [f, g]] (z)〉 = a1(z) 〈λ(t), g(z)〉+ a2(z) 〈λ(t), [f, g](z)〉
+a3(z) 〈λ(t), [g, [f, g]] (z)〉 .

But λ vanishes against g and [f, g] along the singular arc,

〈λ(t), g (z(t))〉 = 〈λ(t), [f, g] (z(t))〉 = 0,

and thus the singular control is simply given by

usin(z(t)) = −a3(z(t)). (33)

The coefficients ai are easily computed: Since the third component of [f, [f, g]]
vanishes, we have a1(z) ≡ 0, and comparing the first coordinates we see that a2(z) =

ξ + bp
θ

q . It then follows that

a3(z) = − 1

γ

[
θξ

(
ln

(
p

q

)
− 1

)
+

1

3
ξ
d

b
p

1
3−θq −

(
dp

1
3 + µ

)
+ b

pθ

q
+ ξ

]
,

giving the singular control as a feedback function of p and q.
The corresponding singular arc is determined by the requirement that λ also

vanishes against f along the singular arc. This holds because the Hamiltonian H
must be identically zero. Since λ is non-zero (recall that λ1(T ) = 1), the vector
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fields f , g and [f, g] must be linearly dependent along the singular arc:

0 = det (f, g, [f, g]) =

∣∣∣∣∣∣∣∣
−ξp ln

(
p
q

)
0 γξp

bpθ −
(
dp

1
3 + µ

)
q −γq −γbpθ

0 1 0

∣∣∣∣∣∣∣∣
= −γξp

∣∣∣∣∣∣ − ln
(
p
q

)
1

bpθ −
(
dp

1
3 + µ

)
q −bpθ

∣∣∣∣∣∣
= −γξp

[
bpθ
(

ln

(
p

q

)
− 1

)
+
(
dp

1
3 + µ

)
q

]
.

Writing x = p
q , we thus have the following result:

Theorem 4.1. For model (Iθ) there exists a locally optimal singular arc defined as
the zero set of the equation

bx (1− lnx) =
(
dp

1
3 + µ

)
p1−θ. (34)

The singular control that makes this curve invariant is given by the feedback control

usin(z) =
1

γ

[
θξ

(
ln

(
p

q

)
− 1

)
+

1

3
ξ
d

b
p

1
3−θq −

(
dp

1
3 + µ

)
+ b

pθ

q
+ ξ

]
. (35)

For the original model (H1) from [9] this relation is given by

bx (1− lnx) = dp
2
3 + µ. (36)

This equation corresponds to a choice θ = 1 and the only difference lies in the
exponent at the d-term which is 2

3 if inhibition is taken proportional to the surface

area and 1
3 if it is taken proportional to the tumor radius. Figs. 3 and 4 give the

singular arcs with the admissible portions (i.e., the sections where the corresponding
singular control takes values in the control set [0, a]) identified for both the original
model (H1) and the two interpolating systems (I1) and (I 2

3
).
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Figure 3. Singular arc with admissible portions identified for (H1)
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Figure 4. Singular arcs with admissible portions identified for the
systems (I 2

3
) (left) and (I1) (right)

Based on these computations, it is now not difficult to construct a synthesis of
optimal controlled trajectories. Essentially, this follows the steps of the construction
given in [17] and it provides the same structure for the interpolating systems (Iθ),
2
3 ≤ θ ≤ 1, as for model (H1). The optimal synthesis for θ = 1 is shown in Fig.
5. Comparing the structure with the optimal syntheses for the models (H1) and
(E), the same features are easily recognized. While the actual geometric shape of
the singular arc more closely resembles the one for the model (H1), the trajectories
corresponding to the control u = 0 much closer follow trajectories similar to those
for the model (E).
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5. Conclusion. Assuming a Gompertzian tumor growth model, for a wide class
of mathematical models for tumor anti-angiogenesis, including models that make
significant differences in their modeling assumptions, there exists a unique path in
(p, q)-space along which optimal tumor reductions are achieved. This path is given
by a so-called singular arc whose precise analytical structure can be determined ex-
plicitly, but of course depends on the functions entering the dynamics of the models.
These solutions are fully robust with respect to parameter variations. In our simula-
tions above we have used parameter values from [9] that were biologically validated,
but the underlying theoretical results do not need to make any assumptions about
these numerical values and are generally valid.

Naturally, the feedback control that defines the optimal dosages along the sin-
gular arc is not a feasible treatment strategy. However, for both the models (H1)
and (E) there exist excellent, and themselves fully robust suboptimal approxima-
tions to the optimal controls given by piecewise constant controls [14, 19]. In fact,
these approximations also are highly insensitive towards the initial value q0 of the
carrying capacity and only show strong dependence on the initial tumor volume p0.
For example, for model (H1) and parameter values that are specified in [19], Fig. 6
compares the minimum tumor volumes that are achievable with the optimal con-
trol (red curve), with constant full (blue) or half (green) dose treatments, and with
another constant dose treatment when this dose is given by the averaged value of
the optimal control (black curve). In these computations the initial tumor volume
was held constant at p0 = 12, 000 [mm3] and the initial value q0 for the carrying
capacity was varied from q0 = 2, 500 [mm3] to q0 = 12, 000 [mm3]. For the optimal
and averaged optimal dose the changes in the minimum tumor volume as the initial
condition for the carrying capacity varies remain within 1% of the best value. Given
the fact that q0 is an idealistic quantity that cannot be measured accurately, this
feature of the optimal protocols would seem to be of practical importance. Also
note that the averaged optimal control, a simple, easily computed and realizable
treatment protocol, already provides excellent approximations to the best possible
values [19]. Knowing the structure of the mathematically optimal controls for the
various models, as some were established in this paper, allows to judge these much
simpler and realistic protocols.
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