Loading [Contrib]/a11y/accessibility-menu.js

Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains

  • Received: 01 November 2007 Accepted: 29 June 2018 Published: 01 March 2008
  • MSC : 35P15, 35J20, 92D25.

  • This paper is concerned with an indefinite weight linear eigenvalue problem in cylindrical domains. We investigate the minimization of the positive principal eigenvalue under the constraint that the weight is bounded by a positive and a negative constant and the total weight is a fixed negative constant. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for a species to survive. Both our analysis and numerical simulations for rectangular domains indicate that there exists a threshold value such that if the total weight is below this threshold value, then the optimal favorable region is a circular-type domain at one of the four corners, and a strip at the one end with shorter edge otherwise.

    Citation: Chiu-Yen Kao, Yuan Lou, Eiji Yanagida. Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains[J]. Mathematical Biosciences and Engineering, 2008, 5(2): 315-335. doi: 10.3934/mbe.2008.5.315

    Related Papers:

  • This paper is concerned with an indefinite weight linear eigenvalue problem in cylindrical domains. We investigate the minimization of the positive principal eigenvalue under the constraint that the weight is bounded by a positive and a negative constant and the total weight is a fixed negative constant. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for a species to survive. Both our analysis and numerical simulations for rectangular domains indicate that there exists a threshold value such that if the total weight is below this threshold value, then the optimal favorable region is a circular-type domain at one of the four corners, and a strip at the one end with shorter edge otherwise.


  • This article has been cited by:

    1. Carlos Conca, Antoine Laurain, Rajesh Mahadevan, Minimization of the Ground State for Two Phase Conductors in Low Contrast Regime, 2012, 72, 0036-1399, 1238, 10.1137/110847822
    2. Dario Mazzoleni, Benedetta Pellacci, Gianmaria Verzini, 2020, Chapter 18, 978-3-030-38229-2, 275, 10.1007/978-3-030-38230-8_18
    3. Seyyed Abbas Mohammadi, Extremal energies of Laplacian operator: Different configurations for steady vortices, 2017, 448, 0022247X, 140, 10.1016/j.jmaa.2016.09.011
    4. Idriss Mazari, Quantitative inequality for the eigenvalue of a Schrödinger operator in the ball, 2020, 269, 00220396, 10181, 10.1016/j.jde.2020.06.057
    5. Gang Meng, Ping Yan, Meirong Zhang, Minimization of Eigenvalues of One-Dimensional p-Laplacian with Integrable Potentials, 2013, 156, 0022-3239, 294, 10.1007/s10957-012-0125-3
    6. Benedetta Pellacci, Gianmaria Verzini, Best dispersal strategies in spatially heterogeneous environments: optimization of the principal eigenvalue for indefinite fractional Neumann problems, 2018, 76, 0303-6812, 1357, 10.1007/s00285-017-1180-z
    7. Idriss Mazari, Grégoire Nadin, Yannick Privat, Optimal location of resources maximizing the total population size in logistic models, 2020, 134, 00217824, 1, 10.1016/j.matpur.2019.10.008
    8. M. Hintermüller, C.-Y. Kao, A. Laurain, Principal Eigenvalue Minimization for an Elliptic Problem with Indefinite Weight and Robin Boundary Conditions, 2012, 65, 0095-4616, 111, 10.1007/s00245-011-9153-x
    9. Kanhaiya Jha, Giovanni Porru, Minimization of the Principal Eigenvalue Under Neumann Boundary Conditions, 2011, 32, 0163-0563, 1146, 10.1080/01630563.2011.592244
    10. Fabien Caubet, Thibaut Deheuvels, Yannick Privat, Optimal Location of Resources for Biased Movement of Species: The 1D Case, 2017, 77, 0036-1399, 1876, 10.1137/17M1124255
    11. Jimmy Lamboley, Antoine Laurain, Grégoire Nadin, Yannick Privat, Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions, 2016, 55, 0944-2669, 10.1007/s00526-016-1084-6
    12. Wenxian Shen, Xiaoxia Xie, Spectraltheory for nonlocal dispersal operators with time periodic indefinite weight functions and applications, 2017, 22, 1553-524X, 1023, 10.3934/dcdsb.2017051
    13. Ping Yan, Meirong Zhang, A Survey on Extremal Problems of Eigenvalues, 2012, 2012, 1085-3375, 1, 10.1155/2012/670463
    14. S.A. Mohammadi, F. Bahrami, Extremal principal eigenvalue of the bi-Laplacian operator, 2016, 40, 0307904X, 2291, 10.1016/j.apm.2015.09.058
    15. W. Ding, H. Finotti, S. Lenhart, Y. Lou, Q. Ye, Optimal control of growth coefficient on a steady-state population model, 2010, 11, 14681218, 688, 10.1016/j.nonrwa.2009.01.015
    16. Weitao Chen, Kenneth Diest, Chiu-Yen Kao, Daniel E. Marthaler, Luke A. Sweatlock, Stanley Osher, 2013, Chapter 7, 978-94-007-6663-1, 175, 10.1007/978-94-007-6664-8_7
    17. Chris Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, 2014, 34, 1553-5231, 1701, 10.3934/dcds.2014.34.1701
    18. Di Kang, Patrick Choi, Chiu-Yen Kao, Minimization of the First Nonzero Eigenvalue Problem for Two-Phase Conductors with Neumann Boundary Conditions, 2020, 80, 0036-1399, 1607, 10.1137/19M1251709
    19. Idriss Mazari, Domènec Ruiz-Balet, A Fragmentation Phenomenon for a Nonenergetic Optimal Control Problem: Optimization of the Total Population Size in Logistic Diffusive Models, 2021, 81, 0036-1399, 153, 10.1137/20M132818X
    20. Braxton Osting, Chris D. White, Édouard Oudet, Minimal Dirichlet Energy Partitions for Graphs, 2014, 36, 1064-8275, A1635, 10.1137/130934568
    21. Weitao Chen, Ching-Shan Chou, Chiu-Yen Kao, Minimizing Eigenvalues for Inhomogeneous Rods and Plates, 2016, 69, 0885-7474, 983, 10.1007/s10915-016-0222-9
    22. M J Ward, Spots, traps, and patches: asymptotic analysis of localized solutions to some linear and nonlinear diffusive systems, 2018, 31, 0951-7715, R189, 10.1088/1361-6544/aabe4b
    23. Chiu-Yen Kao, Shu Su, Efficient Rearrangement Algorithms for Shape Optimization on Elliptic Eigenvalue Problems, 2013, 54, 0885-7474, 492, 10.1007/s10915-012-9629-0
    24. Dario Mazzoleni, Benedetta Pellacci, Gianmaria Verzini, Asymptotic spherical shapes in some spectral optimization problems, 2020, 135, 00217824, 256, 10.1016/j.matpur.2019.10.002
    25. Zhou Lijuan, Meng Gang, Optimal lower bound for the first eigenvalue of fourth order measure differential equation, 2018, 2018, 1687-2770, 10.1186/s13661-018-1110-z
    26. A. Derlet, J.-P. Gossez, P. Takáč, Minimization of eigenvalues for a quasilinear elliptic Neumann problem with indefinite weight, 2010, 371, 0022247X, 69, 10.1016/j.jmaa.2010.03.068
    27. Kewei Liang, Xiliang Lu, Jerry Zhijian Yang, Finite element approximation to the extremal eigenvalue problem for inhomogenous materials, 2015, 130, 0029-599X, 741, 10.1007/s00211-014-0678-1
    28. Braxton Osting, Chiu-Yen Kao, Minimal Convex Combinations of Sequential Laplace--Dirichlet Eigenvalues, 2013, 35, 1064-8275, B731, 10.1137/120881865
    29. Chiu-Yen Kao, Seyyed Abbas Mohammadi, Braxton Osting, Linear Convergence of a Rearrangement Method for the One-dimensional Poisson Equation, 2021, 86, 0885-7474, 10.1007/s10915-020-01389-5
    30. Chiu-Yen Kao, Braxton Osting, Extremal spectral gaps for periodic Schrödinger operators, 2019, 25, 1292-8119, 40, 10.1051/cocv/2018029
    31. Gang Meng, Minimization of eigenvalues for some differential equations with integrable potentials, 2013, 2013, 1687-2770, 10.1186/1687-2770-2013-220
    32. Idriss Mazari, Grégoire Nadin, Yannick Privat, Optimal control of resources for species survival, 2018, 18, 1617-7061, 10.1002/pamm.201800086
    33. Chiu-Yen Kao, Seyyed Abbas Mohammadi, Extremal Rearrangement Problems Involving Poisson’s Equation with Robin Boundary Conditions, 2021, 86, 0885-7474, 10.1007/s10915-021-01413-2
    34. Kentaro Nagahara, Eiji Yanagida, Maximization of the total population in a reaction–diffusion model with logistic growth, 2018, 57, 0944-2669, 10.1007/s00526-018-1353-7
    35. Marina Chugunova, Baasansuren Jadamba, Chiu-Yen Kao, Christine Klymko, Evelyn Thomas, Bingyu Zhao, 2016, Chapter 3, 978-1-4939-6398-0, 51, 10.1007/978-1-4939-6399-7_3
    36. Gang Meng, The optimal upper bound for the first eigenvalue of the fourth order equation, 2017, 37, 1553-5231, 6369, 10.3934/dcds.2017276
    37. King-Yeung Lam, Yuan Lou, 2019, Chapter 8, 978-3-030-22582-7, 205, 10.1007/978-3-030-22583-4_8
    38. Chiu-Yen Kao, Seyyed Abbas Mohammadi, A rearrangement minimization problem corresponding top-Laplacian equation, 2022, 28, 1292-8119, 11, 10.1051/cocv/2022004
    39. Rana D. Parshad, Kwadwo Antwi-Fordjour, Eric M. Takyi, Some Novel Results in Two Species Competition, 2021, 81, 0036-1399, 1847, 10.1137/20M1387274
    40. Idriss Mazari, Grégoire Nadin, Yannick Privat, 2022, 23, 9780323850599, 401, 10.1016/bs.hna.2021.12.012
    41. Idriss Mazari, Domènec Ruiz-Balet, Spatial ecology, optimal control and game theoretical fishing problems, 2022, 85, 0303-6812, 10.1007/s00285-022-01829-w
    42. Idriss Mazari, Grégoire Nadin, Yannick Privat, Shape Optimization of a Weighted Two-Phase Dirichlet Eigenvalue, 2022, 243, 0003-9527, 95, 10.1007/s00205-021-01726-4
    43. Gang Meng, Extremal problems for eigenvalues of measure differential equations, 2015, 143, 0002-9939, 1991, 10.1090/S0002-9939-2015-12304-0
    44. Gang Meng, Ping Yan, Optimal lower bound for the first eigenvalue of the fourth order equation, 2016, 261, 00220396, 3149, 10.1016/j.jde.2016.05.018
    45. Idriss Mazari, Grégoire Nadin, Yannick Privat, Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate, 2022, 47, 0360-5302, 797, 10.1080/03605302.2021.2007533
    46. Idriss Mazari, Grégoire Nadin, Ana Isis Toledo Marrero, Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: two-scale expansions and symmetrisations, 2021, 34, 0951-7715, 7510, 10.1088/1361-6544/ac23b9
    47. Idriss Mazari, Domènec Ruiz-Balet, Quantitative Stability for Eigenvalues of Schrödinger Operator, Quantitative Bathtub Principle, and Application to the Turnpike Property for a Bilinear Optimal Control Problem, 2022, 54, 0036-1410, 3848, 10.1137/21M1393121
    48. Chiu-Yen Kao, Seyyed Abbas Mohammadi, Maximal total population of species in a diffusive logistic model, 2022, 85, 0303-6812, 10.1007/s00285-022-01817-0
    49. Idriss Mazari, The bang-bang property in some parabolic bilinear optimal control problems via two-scale asymptotic expansions, 2023, 284, 00221236, 109855, 10.1016/j.jfa.2023.109855
    50. Chiu-Yen Kao, Braxton Osting, Jackson C. Turner, Flat Tori with Large Laplacian Eigenvalues in Dimensions up to Eight, 2023, 7, 2470-6566, 172, 10.1137/22M1478823
    51. Dario Mazzoleni, Benedetta Pellacci, Gianmaria Verzini, Singular Analysis of the Optimizers of the Principal Eigenvalue in Indefinite Weighted Neumann Problems, 2023, 55, 0036-1410, 4162, 10.1137/22M1490600
    52. 梦萍 江, Research on the Minimization Problem of Principal Eigenvalue in Spherical Shell Domain, 2023, 12, 2324-7991, 3826, 10.12677/AAM.2023.129376
    53. Abdelkrim Chakib, Ibrahim Khalil, A new numerical approach for solving shape optimization fourth-order spectral problems among convex domains, 2023, 149, 08981221, 171, 10.1016/j.camwa.2023.09.001
    54. Idriss Mazari-Fouquer, Existence of Optimal Shapes in Parabolic Bilinear Optimal Control Problems, 2024, 248, 0003-9527, 10.1007/s00205-024-01958-0
    55. Haiyan Zhang, Jijun Ao, Minimization of the lowest positive Neumann-Dirichlet eigenvalue for general indefinite Sturm-Liouville problems, 2024, 412, 00220396, 690, 10.1016/j.jde.2024.08.038
    56. Idriss Mazari-Fouquer, Optimising the carrying capacity in logistic diffusive models: Some qualitative results, 2024, 393, 00220396, 238, 10.1016/j.jde.2024.02.007
    57. Baruch Schneider, Diana Schneiderová, Yifan Zhang, Optimization of Robin Laplacian Eigenvalue With Indefinite Weight in Spherical Shell, 2025, 0170-4214, 10.1002/mma.10697
    58. Jamaal Jacobs, Yurij Salmaniw, King‐Yeung Lam, Lu Zhai, Hao Wang, Bo Zhang, Fundamental principles of the effect of habitat fragmentation on species with different movement rates, 2024, 0888-8892, 10.1111/cobi.14424
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2805) PDF downloads(547) Cited by(58)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog