Critical role of nosocomial transmission in the Toronto SARS outbreak

  • Received: 01 December 2003 Accepted: 29 June 2018 Published: 01 March 2004
  • MSC : 92D30.

  • We develop a compartmental mathematical model to address the role of hospitals in severe acute respiratory syndrome (SARS) transmission dynamics, which partially explains the heterogeneity of the epidemic. Comparison of the e ffects of two major policies, strict hospital infection control procedures and community-wide quarantine measures, implemented in Toronto two weeks into the initial outbreak, shows that their combination is the key to short-term containment and that quarantine is the key to long-term containment.

    Citation: Glenn Webb, Martin J. Blaser, Huaiping Zhu, Sten Ardal, Jianhong Wu. Critical role of nosocomial transmission in the Toronto SARS outbreak[J]. Mathematical Biosciences and Engineering, 2004, 1(1): 1-13. doi: 10.3934/mbe.2004.1.1

    Related Papers:

    [1] Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky . Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences and Engineering, 2006, 3(3): 527-544. doi: 10.3934/mbe.2006.3.527
    [2] Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu . The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Mathematical Biosciences and Engineering, 2007, 4(4): 739-754. doi: 10.3934/mbe.2007.4.739
    [3] Abba B. Gumel, C. Connell McCluskey, James Watmough . An sveir model for assessing potential impact of an imperfect anti-SARS vaccine. Mathematical Biosciences and Engineering, 2006, 3(3): 485-512. doi: 10.3934/mbe.2006.3.485
    [4] A. M. Elaiw, Raghad S. Alsulami, A. D. Hobiny . Global dynamics of IAV/SARS-CoV-2 coinfection model with eclipse phase and antibody immunity. Mathematical Biosciences and Engineering, 2023, 20(2): 3873-3917. doi: 10.3934/mbe.2023182
    [5] Chenxi Dai, Jing Yang, Kaifa Wang . Evaluation of prevention and control interventions and its impact on the epidemic of coronavirus disease 2019 in Chongqing and Guizhou Provinces. Mathematical Biosciences and Engineering, 2020, 17(4): 2781-2791. doi: 10.3934/mbe.2020152
    [6] Abba Gumel, James Watmough . From the guest editors. Mathematical Biosciences and Engineering, 2006, 3(3): i-ii. doi: 10.3934/mbe.2006.3.3i
    [7] A. D. Al Agha, A. M. Elaiw . Global dynamics of SARS-CoV-2/malaria model with antibody immune response. Mathematical Biosciences and Engineering, 2022, 19(8): 8380-8410. doi: 10.3934/mbe.2022390
    [8] Wenhan Guo, Yixin Xie, Alan E Lopez-Hernandez, Shengjie Sun, Lin Li . Electrostatic features for nucleocapsid proteins of SARS-CoV and SARS-CoV-2. Mathematical Biosciences and Engineering, 2021, 18(3): 2372-2383. doi: 10.3934/mbe.2021120
    [9] Darrak Moin Quddusi, Sandesh Athni Hiremath, Naim Bajcinca . Mutation prediction in the SARS-CoV-2 genome using attention-based neural machine translation. Mathematical Biosciences and Engineering, 2024, 21(5): 5996-6018. doi: 10.3934/mbe.2024264
    [10] Junyuan Yang, Guoqiang Wang, Shuo Zhang . Impact of household quarantine on SARS-Cov-2 infection in mainland China: A mean-field modelling approach. Mathematical Biosciences and Engineering, 2020, 17(5): 4500-4512. doi: 10.3934/mbe.2020248
  • We develop a compartmental mathematical model to address the role of hospitals in severe acute respiratory syndrome (SARS) transmission dynamics, which partially explains the heterogeneity of the epidemic. Comparison of the e ffects of two major policies, strict hospital infection control procedures and community-wide quarantine measures, implemented in Toronto two weeks into the initial outbreak, shows that their combination is the key to short-term containment and that quarantine is the key to long-term containment.


  • This article has been cited by:

    1. Xiaotian Wu, Venkata R. Duvvuri, Yijun Lou, Nicholas H. Ogden, Yann Pelcat, Jianhong Wu, Developing a temperature-driven map of the basic reproductive number of the emerging tick vector of Lyme disease Ixodes scapularis in Canada, 2013, 319, 00225193, 50, 10.1016/j.jtbi.2012.11.014
    2. Anuj Kumar Sharma, Amit Sharma, Kulbhushan Agnihotri, Bifurcation behaviors analysis of a plankton model with multiple delays, 2016, 09, 1793-5245, 1650086, 10.1142/S1793524516500868
    3. Mohammad A. Safi, Abba B. Gumel, The effect of incidence functions on the dynamics of a quarantine/isolation model with time delay, 2011, 12, 14681218, 215, 10.1016/j.nonrwa.2010.06.009
    4. Martin J. Blaser, Studying microbiology with Glenn F. Webb, 2015, 12, 1551-0018, xvii, 10.3934/mbe.2015.12.4xvii
    5. Wenjuan Guo, Qimin Zhang, Xining Li, Weiming Wang, Dynamic behavior of a stochastic SIRS epidemic model with media coverage, 2018, 41, 01704214, 5506, 10.1002/mma.5094
    6. Xiaodong Wang, Chunxia Wang, Kai Wang, Global dynamics of a novel deterministic and stochastic SIR epidemic model with vertical transmission and media coverage, 2020, 2020, 1687-1847, 10.1186/s13662-020-03145-3
    7. Wei-Ming Wang, Hou-Ye Liu, Yong-Li Cai, Zhen-Qing Li, Turing pattern selection in a reaction-diffusion epidemic model, 2011, 20, 1674-1056, 074702, 10.1088/1674-1056/20/7/074702
    8. Kimberly M. Thompson, Dominika A. Kalkowska, Kamran Badizadegan, Hypothetical emergence of poliovirus in 2020: Part 1. Consequences of policy decisions to respond using nonpharmaceutical interventions, 2021, 1476-0584, 10.1080/14760584.2021.1891888
    9. Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, 2019, Chapter 16, 978-1-4939-9826-5, 507, 10.1007/978-1-4939-9828-9_16
    10. Mohammad A. Safi, Abba B. Gumel, Dynamics of a model with quarantine-adjusted incidence and quarantine of susceptible individuals, 2013, 399, 0022247X, 565, 10.1016/j.jmaa.2012.10.015
    11. Fred Brauer, Some Simple Nosocomial Disease Transmission Models, 2015, 77, 0092-8240, 460, 10.1007/s11538-015-0061-0
    12. Jennifer B. Nuzzo, Diane Meyer, Michael Snyder, Sanjana J. Ravi, Ana Lapascu, Jon Souleles, Carolina I. Andrada, David Bishai, What makes health systems resilient against infectious disease outbreaks and natural hazards? Results from a scoping review, 2019, 19, 1471-2458, 10.1186/s12889-019-7707-z
    13. Ying-Hen Hsieh, Junli Liu, Yun-Huei Tzeng, Jianhong Wu, Impact of visitors and hospital staff on nosocomial transmission and spread to community, 2014, 356, 00225193, 20, 10.1016/j.jtbi.2014.04.003
    14. A. B. Gumel, Global dynamics of a two-strain avian influenza model, 2009, 86, 0020-7160, 85, 10.1080/00207160701769625
    15. Lin Hu, Lin‐Fei Nie, Dynamic modeling and analysis of COVID‐19 in different transmission process and control strategies, 2021, 44, 0170-4214, 1409, 10.1002/mma.6839
    16. Martin J. Blaser, Studying microbiology with Glenn F. Webb, 2015, 12, 1551-0018, xvii, 10.3934/mbe.2015.12.4xvii
    17. Fred Brauer, Mathematical epidemiology: Past, present, and future, 2017, 2, 24680427, 113, 10.1016/j.idm.2017.02.001
    18. Rania Assab, Narimane Nekkab, Pascal Crépey, Pascal Astagneau, Didier Guillemot, Lulla Opatowski, Laura Temime, Mathematical models of infection transmission in healthcare settings, 2017, 30, 0951-7375, 410, 10.1097/QCO.0000000000000390
    19. Khalid Hussain Al-Ahmadi, Mohammed Hussain Alahmadi, Ali Saeed Al-Zahrani, Maged Gomaa Hemida, Spatial variability of Middle East respiratory syndrome coronavirus survival rates and mortality hazard in Saudi Arabia, 2012–2019, 2020, 8, 2167-8359, e9783, 10.7717/peerj.9783
    20. O. A. Perevesentsev, T. O. Cholodnaya, A. E. Samsonov, D. V. Burtsev, Methods of specific laboratory testing of new coronavirus infection, 2020, 11, 2618-7876, 27, 10.21886/2219-8075-2020-11-3-27-33
    21. Matthew P. Cheng, Jesse Papenburg, Michaël Desjardins, Sanjat Kanjilal, Caroline Quach, Michael Libman, Sabine Dittrich, Cedric P. Yansouni, Diagnostic Testing for Severe Acute Respiratory Syndrome–Related Coronavirus 2, 2020, 172, 0003-4819, 726, 10.7326/M20-1301
    22. Saskia Popescu, Hospital biopreparedness in the Looming Presence of SARS‐CoV‐2/COVID‐19, 2020, 3, 2398-8835, 10.1002/hsr2.149
    23. Supatcha Siriprapaiwan, Elvin J. Moore, Sanoe Koonprasert, Generalized reproduction numbers, sensitivity analysis and critical immunity levels of an SEQIJR disease model with immunization and varying total population size, 2018, 146, 03784754, 70, 10.1016/j.matcom.2017.10.006
    24. Kin On Kwok, Gabriel M Leung, Wai Yee Lam, Steven Riley, Using models to identify routes of nosocomial infection: a large hospital outbreak of SARS in Hong Kong, 2007, 274, 0962-8452, 611, 10.1098/rspb.2006.0026
    25. A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den Driessche, D. Gabrielson, C. Bowman, M. E. Alexander, S. Ardal, J. Wu, B. M. Sahai, Modelling strategies for controlling SARS outbreaks, 2004, 271, 0962-8452, 2223, 10.1098/rspb.2004.2800
    26. Dong-Wei Huang, Hong-Li Wang, Jian-Feng Feng, Zhi-Wen Zhu, Modelling algal densities in harmful algal blooms (HAB) with stochastic dynamics, 2008, 32, 0307904X, 1318, 10.1016/j.apm.2007.04.006
    27. Govind Prasad Sahu, Joydip Dhar, Dynamics of an SEQIHRS epidemic model with media coverage, quarantine and isolation in a community with pre-existing immunity, 2015, 421, 0022247X, 1651, 10.1016/j.jmaa.2014.08.019
    28. Mohammad A. Safi, Mudassar Imran, Abba B. Gumel, Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation, 2012, 131, 1431-7613, 19, 10.1007/s12064-011-0148-6
    29. Ayako Fukutome, Koichi Watashi, Norito Kawakami, Hirofumi Ishikawa, Mathematical Modeling of Severe Acute Respiratory Syndrome Nosocomial Transmission in Japan: The Dynamics of Incident Cases and Prevalent Cases, 2007, 51, 03855600, 823, 10.1111/j.1348-0421.2007.tb03978.x
    30. Michael Small, C.K. Tse, Clustering model for transmission of the SARS virus: application to epidemic control and risk assessment, 2005, 351, 03784371, 499, 10.1016/j.physa.2005.01.009
    31. Ying-Hen Hsieh, Chwan-Chuan King, Cathy W.S Chen, Mei-Shang Ho, Sze-Bi Hsu, Yi-Chun Wu, Impact of quarantine on the 2003 SARS outbreak: A retrospective modeling study, 2007, 244, 00225193, 729, 10.1016/j.jtbi.2006.09.015
    32. Jing-An Cui, Xin Tao, Huaiping Zhu, An SIS Infection Model Incorporating Media Coverage, 2008, 38, 0035-7596, 10.1216/RMJ-2008-38-5-1323
    33. Chunqing Wu, The Optimal Vaccination Rate Based on Structured SI Model, 2012, 29, 18777058, 1713, 10.1016/j.proeng.2012.01.200
    34. Wenjuan Guo, Yongli Cai, Qimin Zhang, Weiming Wang, Stochastic persistence and stationary distribution in an SIS epidemic model with media coverage, 2018, 492, 03784371, 2220, 10.1016/j.physa.2017.11.137
    35. Dongwei Huang, Hongli Wang, Jianfeng Feng, Zhi-wen Zhu, Hopf bifurcation of the stochastic model on HAB nonlinear stochastic dynamics, 2006, 27, 09600779, 1072, 10.1016/j.chaos.2005.04.086
    36. Jason Bintz, Suzanne Lenhart, Cristina Lanzas, Antimicrobial Stewardship and Environmental Decontamination for the Control of Clostridium difficile Transmission in Healthcare Settings, 2017, 79, 0092-8240, 36, 10.1007/s11538-016-0224-7
    37. Jianping Sha, Yuan Li, Xiaowen Chen, Yan Hu, Yajin Ren, Xingyi Geng, Zhiruo Zhang, Shelan Liu, Fatality risks for nosocomial outbreaks of Middle East respiratory syndrome coronavirus in the Middle East and South Korea, 2017, 162, 0304-8608, 33, 10.1007/s00705-016-3062-x
    38. Juan Zhang, Jie Lou, Zhien Ma, Jianhong Wu, A compartmental model for the analysis of SARS transmission patterns and outbreak control measures in China, 2005, 162, 00963003, 909, 10.1016/j.amc.2003.12.131
    39. Anatoliy V. Swishchuk, Nikolaos Limnios, Mariya Svishchuk, Averaging, Merging and Diffusion Approximation of Stochastic SARS Models, 2012, 1556-5068, 10.2139/ssrn.2201765
    40. Mohammad A. Safi, Global Stability Analysis of Two-Stage Quarantine-Isolation Model with Holling Type II Incidence Function, 2019, 7, 2227-7390, 350, 10.3390/math7040350
    41. YIPING LIU, JING-AN CUI, THE IMPACT OF MEDIA COVERAGE ON THE DYNAMICS OF INFECTIOUS DISEASE, 2008, 01, 1793-5245, 65, 10.1142/S1793524508000023
    42. Nadin Younes, Duaa W. Al-Sadeq, Hadeel AL-Jighefee, Salma Younes, Ola Al-Jamal, Hanin I. Daas, Hadi. M. Yassine, Gheyath K. Nasrallah, Challenges in Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2, 2020, 12, 1999-4915, 582, 10.3390/v12060582
    43. Yun Kang, Carlos Castillo-Chavez, Multiscale analysis of compartment models with dispersal, 2012, 6, 1751-3758, 50, 10.1080/17513758.2012.713125
    44. Christopher M. Kribs-Zaleta, Jean-François Jusot, Philippe Vanhems, Sandrine Charles, Modeling Nosocomial Transmission of Rotavirus in Pediatric Wards, 2011, 73, 0092-8240, 1413, 10.1007/s11538-010-9570-z
    45. M. H. Ling, S. Y. Wong, K. L. Tsui, Efficient heterogeneous sampling for stochastic simulation with an illustration in health care applications, 2017, 46, 0361-0918, 631, 10.1080/03610918.2014.977914
    46. Mohammad A. Safi, Abba B. Gumel, Qualitative study of a quarantine/isolation model with multiple disease stages, 2011, 218, 00963003, 1941, 10.1016/j.amc.2011.07.007
    47. Georges F. Vles, Stijn Ghijselings, Iris De Ryck, Geert Meyfroidt, Nicola A. Sweeney, Wouter Oosterlinck, Minne Casteels, Lieven Moke, Returning to Elective Orthopedic Surgery During the COVID-19 Pandemic: A Multidisciplinary and Pragmatic Strategy for Initial Patient Selection, 2020, 16, 1549-8425, e292, 10.1097/PTS.0000000000000755
    48. BiBi Fatima, Manar A. Alqudah, Gul Zaman, Fahd Jarad, Thabet Abdeljawad, Modeling the Transmission Dynamics of Middle Eastern Respiratory Syndrome Coronavirus with the Impact of Media Coverage, 2021, 22113797, 104053, 10.1016/j.rinp.2021.104053
    49. Martin J. Blaser, Studying microbiology with Glenn F. Webb, 2015, 12, 1551-0018, 10.3934/mbe.2015.12.xvii
    50. Rajasekar S. P., Pitchaimani M., Quanxin Zhu, Higher order stochastically perturbed SIRS epidemic model with relapse and media impact, 2022, 45, 0170-4214, 843, 10.1002/mma.7817
    51. Tingting Zheng, Huaiping Zhu, Zhidong Teng, Linfei Nie, Yantao Luo, Patch model for border reopening and control to prevent new outbreaks of COVID-19, 2023, 20, 1551-0018, 7171, 10.3934/mbe.2023310
    52. Prathap Somu, Sonali Mohanty, Srishti Chakraborty, Subhankar Paul, 2021, Chapter 11, 978-3-030-85108-8, 173, 10.1007/978-3-030-85109-5_11
    53. O.A. Perevesentsev, T.O. Cholodnaya, D.V. Burtsev, Foreign experience in molecular genetic and immunological diagnostics of SARS-CoV-2 (review), 2021, 10, 2305-2198, 47, 10.17116/labs20211004147
    54. Vijay Pal Bajiya, Jai Prakash Tripathi, Vipul Kakkar, Yun Kang, Modeling the impacts of awareness and limited medical resources on the epidemic size of a multi-group SIR epidemic model, 2022, 15, 1793-5245, 10.1142/S1793524522500450
    55. Emily Clayton, Mohammed A. Rohaim, Mahmoud Bayoumi, Muhammad Munir, 2021, Chapter 2, 978-3-030-85108-8, 15, 10.1007/978-3-030-85109-5_2
    56. Nikolaos Limnios, Anatoliy Swishchuk, 2023, Chapter 7, 978-3-031-33428-3, 139, 10.1007/978-3-031-33429-0_7
    57. Jummy David, Gabrielle Brankston, Idriss Sekkak, Sungju Moon, Xiaoyan Li, Sana Jahedi, Zahra Mohammadi, Ao Li, Martin Grunnil, Pengfei Song, Woldegebriel Assefa, Nicola Bragazzi, Jianhong Wu, 2023, Chapter 1, 978-3-031-40804-5, 1, 10.1007/978-3-031-40805-2_1
    58. Glenn Webb, Xinyue Evelyn Zhao, An Epidemic Model with Infection Age and Vaccination Age Structure, 2024, 16, 2036-7449, 35, 10.3390/idr16010004
  • Reader Comments
  • © 2004 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4651) PDF downloads(1205) Cited by(56)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog