Research article Topical Sections

Geometric analysis on warped product semi-slant submanifolds of a locally metallic Riemannian space form

  • Published: 09 April 2025
  • MSC : 53C40, 53C42, 53C42

  • In this paper, we study warped product semi-slant submanifolds of locally metallic Riemannian manifolds. A Chen-type inequality for such submanifolds is derived. We construct a non trivial example of such classes of submanifolds. We also provide several applications of the obtained inequality.

    Citation: Biswabismita Bag, Meraj Ali Khan, Tanumoy Pal, Shyamal Kumar Hui. Geometric analysis on warped product semi-slant submanifolds of a locally metallic Riemannian space form[J]. AIMS Mathematics, 2025, 10(4): 8131-8143. doi: 10.3934/math.2025373

    Related Papers:

  • In this paper, we study warped product semi-slant submanifolds of locally metallic Riemannian manifolds. A Chen-type inequality for such submanifolds is derived. We construct a non trivial example of such classes of submanifolds. We also provide several applications of the obtained inequality.



    加载中


    [1] S. I. Goldberg, K. Yano, Polynomial structures on manifolds, Kodai Math. Sem. Rep., 22 (1970), 199–218. https://doi.org/10.2996/kmj/1138846118 doi: 10.2996/kmj/1138846118
    [2] S. I. Goldberg, N. C. Petridis, Differentiable solutions of algebraic equations on manifolds, Kodai Math. Sem. Rep., 25 (1973), 111–12. https://doi.org/10.2996/kmj/1138846727 doi: 10.2996/kmj/1138846727
    [3] V. W. de Spinadel, The metallic means family and multifractal spectra, Nonlinear Anal., 36 (1999), 721–745.
    [4] V. W. de Spinadel, The family of metallic means, Vis. Math., 1 (1999), 1–16.
    [5] V. D. Spinadel, The metallic means family and forbidden symmetries, Int. Math. J., 2 (2002), 279–288.
    [6] C. E. Hretcanu, M. Crasmareanu, Metallic structures on Riemannian manifolds, Rev. Un. Mat. Argentina, 54 (2013), 15–27.
    [7] M. Chandra, M. Rani, Categorization of fractal plants, Chaos Soliton. Fract., 41 (2009), 1442–1447. https://doi.org/10.1016/j.chaos.2008.05.024 doi: 10.1016/j.chaos.2008.05.024
    [8] A. Stakhov, B. Rozin, The "golden" algebraic equations, Chaos Soliton. Fract., 27 (2006), 1415–1421. https://doi.org/10.1016/j.chaos.2005.04.107 doi: 10.1016/j.chaos.2005.04.107
    [9] V. W. De Spinadel, On characterization of the onset to chaos, Chaos Soliton. Fract., 8 (1997), 1631–1643. https://doi.org/10.1016/S0960-0779(97)00001-5 doi: 10.1016/S0960-0779(97)00001-5
    [10] J. Nash, The imbedding problem for Riemannian manifolds, Ann. Math., 63 (1956), 20–63. https://doi.org/10.2307/1969989 doi: 10.2307/1969989
    [11] C. E. Hretcanu, A. M. Blaga, Warped product submanifolds in metallic Riemannian manifolds, arXiv, 2018. https://doi.org/10.48550/arXiv.1806.08820
    [12] L. Alqahtani, E. Al-Husainy, Chen's inequality for CR-warped products in locally metallic Riemannian manifolds, Eur. J. Pure Appl. Math., 17 (2024), 2481–2491. https://doi.org/10.29020/nybg.ejpam.v17i4.5492 doi: 10.29020/nybg.ejpam.v17i4.5492
    [13] A. Mustafa, A. De, S. Uddin, Characterization of warped product submanifolds in Kenmotsu manifolds, Balkan J. Geom. Appl., 20 (2015), 86–97.
    [14] A. Ali, C. Ozel, Geometry of warped product pointwise semi-slant submanifolds of cosymplectic manifolds and its applications, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750042. https://doi.org/10.1142/S0219887817500426 doi: 10.1142/S0219887817500426
    [15] A. Ali, P. Laurian-Ioan, Geometry of warped product immersions of Kenmotsu space forms and its applications to slant immersions, J. Geom. Phys., 114 (2017), 276–290. https://doi.org/10.1016/j.geomphys.2016.12.001 doi: 10.1016/j.geomphys.2016.12.001
    [16] A. Ali, S. Uddin, W. A. M. Othman, Geometry of warped product pointwise semi-slant submanifolds of Kaehler manifolds, Filomat, 31 (2017), 3771–3788. https://doi.org/10.2298/FIL1712771A doi: 10.2298/FIL1712771A
    [17] Y. Li, A. Ali, R. Ali, A general inequality for CR-warped products in generalized Sasakian space form and its applications, Adv. Math. Phys., 2021 (2021), 5777554. https://doi.org/10.1155/2021/5777554 doi: 10.1155/2021/5777554
    [18] Y. Li, A. H. Alkhaldi, A. Ali, Geometric mechanics on warped product semi-slant submanifold of generalized complex space forms, Adv. Math. Phys., 2021 (2021), 5900801. https://doi.org/10.1155/2021/5900801 doi: 10.1155/2021/5900801
    [19] O. Bahadır, S. Uddin, Slant submanifolds of golden Riemannian manifolds, arXiv, 2018. https://doi.org/10.48550/arXiv.1804.11126
    [20] X. Cheng, D. Zhou, Rigidity of four-dimensional gradient shrinking Ricci solitons, J. Reine Angew. Math. (Crelles J.), 2023 (2023), 255–274. https://doi.org/10.1515/crelle-2023-0042 doi: 10.1515/crelle-2023-0042
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(818) PDF downloads(65) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog