We establish a new sequence of polynomials that combines the Fibonacci and Lucas polynomials. We will refer to these polynomials as merged Fibonacci-Lucas polynomials (MFLPs). We will show that we can represent these polynomials by combining two certain Fibonacci polynomials. This formula will be essential for determining the power form representation of these polynomials. This representation and its inversion formula for these polynomials are crucial to derive new formulas about the MFLPs. New derivative expressions for these polynomials are given as combinations of several symmetric and non-symmetric polynomials. We also provide the inverse formulas for these formulas. Some new product formulas involving the MFLPs have also been derived. We also provide some definite integral formulas that apply to the derived formulas.
Citation: Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori. New expressions for certain polynomials combining Fibonacci and Lucas polynomials[J]. AIMS Mathematics, 2025, 10(2): 2930-2957. doi: 10.3934/math.2025136
We establish a new sequence of polynomials that combines the Fibonacci and Lucas polynomials. We will refer to these polynomials as merged Fibonacci-Lucas polynomials (MFLPs). We will show that we can represent these polynomials by combining two certain Fibonacci polynomials. This formula will be essential for determining the power form representation of these polynomials. This representation and its inversion formula for these polynomials are crucial to derive new formulas about the MFLPs. New derivative expressions for these polynomials are given as combinations of several symmetric and non-symmetric polynomials. We also provide the inverse formulas for these formulas. Some new product formulas involving the MFLPs have also been derived. We also provide some definite integral formulas that apply to the derived formulas.
[1] | J. P. Boyd, Chebyshev and Fourier spectral methods, Courier Corporation, 2001. |
[2] | J. C. Mason, D. C. Handscomb, Chebyshev polynomials, CRC Press, 2002. |
[3] | F. Marcellán, Orthogonal polynomials and special functions: Computation and applications, Springer Science & Business Media, 1883 (2006). |
[4] |
M. A. Abdelkawy, M. E. A. Zaky, M. M. Babatin, A. S. Alnahdi, Jacobi spectral collocation technique for fractional inverse parabolic problem, Alex. Eng. J., 61 (2022), 6221–6236. https://doi.org/10.1016/j.aej.2021.11.050 doi: 10.1016/j.aej.2021.11.050
![]() |
[5] |
M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, Galerkin operational approach for multi-dimensions fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 114 (2022), 106608. https://doi.org/10.1016/j.cnsns.2022.106608 doi: 10.1016/j.cnsns.2022.106608
![]() |
[6] |
C. Othmani, H. Zhang, C. Lü, Y. Q. Wang, A. R. Kamali, Orthogonal polynomial methods for modeling elastodynamic wave propagation in elastic, piezoelectric and magneto-electro-elastic composites—a review, Compos. Struct., 286 (2022), 115245. https://doi.org/10.1016/j.compstruct.2022.115245 doi: 10.1016/j.compstruct.2022.115245
![]() |
[7] |
M. Pourbabaee, A. Saadatmandi, Collocation method based on Chebyshev polynomials for solving distributed order fractional differential equations, Comput. Methods Differ. Equ., 9 (2021), 858–873. https://doi.org/10.22034/cmde.2020.38506.1695 doi: 10.22034/cmde.2020.38506.1695
![]() |
[8] |
Y. Soykan, On generalized Fibonacci polynomials: Horadam polynomials, Earthline J. Math. Sci., 11 (2023), 23–114. https://doi.org/10.34198/ejms.11123.23114 doi: 10.34198/ejms.11123.23114
![]() |
[9] |
R. S. Rajawat, K. K. Singh, V. N. Mishra, Approximation by modified Bernstein polynomials based on real parameters, Math. Found. Comput., 7 (2024), 297–309. https://doi.org/10.3934/mfc.2023005 doi: 10.3934/mfc.2023005
![]() |
[10] |
M. Pathan, W. A. Khan, A new class of generalized polynomials associated with Hermite and Euler polynomials, Mediterr. J. Math., 13 (2016), 913–928. https://doi.org/10.1007/s00009-015-0551-1 doi: 10.1007/s00009-015-0551-1
![]() |
[11] |
N. Khan, T. Usman, J. Choi, A new class of generalized polynomials, Turk. J. Math., 42 (2018), 1366–1379. https://doi.org/10.3906/mat-1709-44 doi: 10.3906/mat-1709-44
![]() |
[12] |
G. Dattoli, Generalized polynomials, operational identities and their applications, J. Comput. Appl. Math., 118 (2000), 111–123. https://doi.org/10.1016/S0377-0427(00)00283-1 doi: 10.1016/S0377-0427(00)00283-1
![]() |
[13] |
T. Kim, D. S. Kim, Degenerate polyexponential functions and degenerate Bell polynomials, J. Math. Anal. Appl., 487 (2020), 124017. https://doi.org/10.1016/j.jmaa.2020.124017 doi: 10.1016/j.jmaa.2020.124017
![]() |
[14] |
W. M. Abd-Elhameed, O. M. Alqubori, On generalized Hermite polynomials, AIMS Math., 9 (2024), 32463–32490. https://doi.org/10.3934/math.20241556 doi: 10.3934/math.20241556
![]() |
[15] |
F. Qi, D. W. Niu, D. Lim, Y. H. Yao, Special values of the Bell polynomials of the second kind for some sequences and functions, J. Math. Anal. Appl., 491 (2020), 124382. https://doi.org/10.1016/j.jmaa.2020.124382 doi: 10.1016/j.jmaa.2020.124382
![]() |
[16] | S. Araci, A new class of Bernoulli polynomials attached to polyexponential functions and related identities, Adv. Stud. Contemp. Math., 31 (2021), 195–204. |
[17] |
D. V. Dolgy, D. S. Kim, T. Kim, J. Kwon, On fully degenerate Bell numbers and polynomials, Filomat, 34 (2020), 507–514. https://doi.org/10.2298/FIL2002507D doi: 10.2298/FIL2002507D
![]() |
[18] |
F. A. Costabile, M. I. Gualtieri, A. Napoli, Polynomial sequences: Elementary basic methods and application hints. A survey, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Math., 113 (2019), 3829–3862. https://doi.org/10.1007/s13398-019-00682-9 doi: 10.1007/s13398-019-00682-9
![]() |
[19] |
F. A. Costabile, M. I. Gualtieri, A. Napoli, M. Altomare, Odd and even Lidstone-type polynomial sequences. Part 1: Basic topics, Adv. Differ. Equ., 2018 (2018), 1–26. https://doi.org/10.1007/s10092-019-0354-z doi: 10.1007/s10092-019-0354-z
![]() |
[20] |
F. Costabile, M. Gualtieri, A. Napoli, Recurrence relations and determinant forms for general polynomial sequences. Application to Genocchi polynomials, Integr. Transf. Spec. F., 30 (2019), 112–127. https://doi.org/10.1080/10652469.2018.1537272 doi: 10.1080/10652469.2018.1537272
![]() |
[21] | O. Yayenie, New identities for generalized Fibonacci sequences and new generalization of Lucas sequences, Southeast Asian Bull. Math., 36 (2012). |
[22] |
N. Kilar, Y. Simsek, Two parametric kinds of Eulerian-type polynomials associated with Euler's formula, Symmetry, 11 (2019), 1097. https://doi.org/10.3390/sym11091097 doi: 10.3390/sym11091097
![]() |
[23] |
L. Aceto, H. Malonek, G. Tomaz, A unified matrix approach to the representation of Appell polynomials, Integr. Transf. Spec. Funct., 26 (2015), 426–441. https://doi.org/10.1080/10652469.2015.1013035 doi: 10.1080/10652469.2015.1013035
![]() |
[24] | T. Kim, D. Kim, Some results on degenerate Fubini and degenerate Bell polynomials, Appl. Anal. Discrete Math., 17 (2023), 548–560. |
[25] |
K. Prasad, H. Mahato, Cryptography using generalized Fibonacci matrices with Affine-Hill cipher, J. Discrete Math. Sci. Cryptogr., 25 (2022), 2341–2352. https://doi.org/10.1080/09720529.2020.1838744 doi: 10.1080/09720529.2020.1838744
![]() |
[26] | T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley & Sons, 51 (2011). |
[27] |
W. M. Abd-Elhameed, H. M. Ahmed, A. Napoli, V. Kowalenko, New formulas involving Fibonacci and certain orthogonal polynomials, Symmetry, 15 (2023), 736. https://doi.org/10.3390/sym15030736 doi: 10.3390/sym15030736
![]() |
[28] |
W. M. Abd-Elhameed, A. Napoli, Some novel formulas of Lucas polynomials via different approaches, Symmetry, 15 (2023), 185. https://doi.org/10.3390/sym15010185 doi: 10.3390/sym15010185
![]() |
[29] |
W. M. Abd-Elhameed, A. F. Abu-Sunayh, M. H. Alharbi, A. G. Atta, Spectral tau technique via Lucas polynomials for the time-fractional diffusion equation, AIMS Math., 9 (2024), 34567–34587. https://doi.org/10.3934/math.20241646 doi: 10.3934/math.20241646
![]() |
[30] |
Z. Wu, W. Zhang, Several identities involving the Fibonacci polynomials and Lucas polynomials, J. Inequal. Appl., 2013 (2013), 1–14. https://doi.org/10.1186/1029-242X-2013-205 doi: 10.1186/1029-242X-2013-205
![]() |
[31] |
Z. Jin, On the Lucas polynomials and some of their new identities, Adv. Differ. Equ., 2018 (2018), 1–8. https://doi.org/10.1186/s13662-018-1527-9 doi: 10.1186/s13662-018-1527-9
![]() |
[32] | D. Aharonov, A. Beardon, K. Driver, Fibonacci, Chebyshev, and orthogonal polynomials, Am. Math. Mon., 112 (2005), 612–630. https://doi.org/10.1080/00029890.2005.11920232 |
[33] |
Y. Yuan, W. Zhang, Some identities involving the Fibonacci polynomials, Fibonacci Q., 40 (2002), 314–318. https://doi.org/10.1080/00150517.2002.12428631 doi: 10.1080/00150517.2002.12428631
![]() |
[34] |
W. M. Abd-Elhameed, A. N. Philippou, N. A. Zeyada, Novel results for two generalized classes of Fibonacci and Lucas polynomials and their uses in the reduction of some radicals, Mathematics, 10 (2022), 2342. https://doi.org/10.3390/math10132342 doi: 10.3390/math10132342
![]() |
[35] |
N. Yilmaz, I. Aktas, Special transforms of the generalized bivariate Fibonacci and Lucas polynomials, Hacet. J. Math. Stat., 52 (2023), 640–651. https://doi.org/10.15672/hujms.1110311 doi: 10.15672/hujms.1110311
![]() |
[36] |
W. M. Abd-Elhameed, N. A. Zeyada, New formulas including convolution, connection and radicals formulas of k-Fibonacci and k-Lucas polynomials, Indian J. Pure Appl. Math., 53 (2022), 1006–1016. https://doi.org/10.1007/s13226-021-00214-5 doi: 10.1007/s13226-021-00214-5
![]() |
[37] |
A. Nalli, P. Haukkanen, On generalized Fibonacci and Lucas polynomials, Chaos Soliton. Fract., 42 (2009), 3179–3186. https://doi.org/10.1016/j.chaos.2009.04.048 doi: 10.1016/j.chaos.2009.04.048
![]() |
[38] |
S. Haq, I. Ali, Approximate solution of two-dimensional Sobolev equation using a mixed Lucas and Fibonacci polynomials, Eng. Comput., 38 (2022), 2059–2068. https://doi.org/10.1007/s00366-021-01327-5 doi: 10.1007/s00366-021-01327-5
![]() |
[39] |
S. Sabermahani, Y. Ordokhani, P. Rahimkhani, Application of generalized Lucas wavelet method for solving nonlinear fractal-fractional optimal control problems, Chaos Soliton. Fract., 170 (2023), 113348. https://doi.org/10.1016/j.chaos.2023.113348 doi: 10.1016/j.chaos.2023.113348
![]() |
[40] |
W. M. Abd-Elhameed, New product and linearization formulas of Jacobi polynomials of certain parameters, Integr. Transf. Spec. F., 26 (2015), 586–599. https://doi.org/10.1080/10652469.2015.1029924 doi: 10.1080/10652469.2015.1029924
![]() |
[41] |
I. Area, E. Godoy, A. Ronveaux, A. Zarzo, Solving connection and linearization problems within the Askey scheme and its q-analogue via inversion formulas, J. Comput. Appl. Math., 133 (2001), 151–162. https://doi.org/10.1016/S0377-0427(00)00640-3 doi: 10.1016/S0377-0427(00)00640-3
![]() |
[42] |
H. Chaggara, W. Koepf, On linearization and connection coefficients for generalized Hermite polynomials, J. Comput. Appl. Math., 236 (2011), 65–73. https://doi.org/10.1016/j.cam.2011.03.010 doi: 10.1016/j.cam.2011.03.010
![]() |
[43] |
J. Sánchez-Ruiz, Linearization and connection formulas involving squares of Gegenbauer polynomials, Appl. Math. Lett., 14 (2001), 261–267. https://doi.org/10.1016/s0893-9659(00)00146-4 doi: 10.1016/s0893-9659(00)00146-4
![]() |
[44] |
J. Sánchez-Ruiz, P. L. Artés, A. Martínez-Finkelshtein, J. Dehesa, General linearization formulas for products of continuous hypergeometric-type polynomials, J. Phys. A: Math. Gen., 32 (1999), 7345. https://doi.org/10.1088/0305-4470/32/42/308 doi: 10.1088/0305-4470/32/42/308
![]() |
[45] |
H. M. Ahmed, Computing expansions coefficients for Laguerre polynomials, Integr. Transf. Spec. Funct., 32 (2021), 271–289. https://doi.org/10.1080/10652469.2020.1815727 doi: 10.1080/10652469.2020.1815727
![]() |
[46] |
W. M. Abd-Elhameed, Novel formulas of certain generalized Jacobi polynomials, Mathematics, 10 (2022), 4237. https://doi.org/10.3390/math10224237 doi: 10.3390/math10224237
![]() |
[47] |
W. M. Abd-Elhameed, A. K. Amin, Novel formulas of Schröder polynomials and their related numbers, Mathematics, 11 (2023), 468. https://doi.org/10.3390/math11020468 doi: 10.3390/math11020468
![]() |
[48] | G. Andrews, R. Askey, R. Roy, Special functions, Cambridge University Press, 71 (1999). |
[49] | R. Askey, Orthogonal polynomials and special functions, SIAM, 1975. |
[50] | G. B. Djordjevic, G. V. Milovanovic, Special classes of polynomials, University of Nis, Faculty of Technology Leskovac, 2014. |
[51] | W. Koepf, Hypergeometric summation, Springer Universitext Series. Springer, 2Eds, 2014. Available from: http://www.hypergeometric-summation.org. |
[52] |
W. M. Abd-Elhameed, A. K. Amin, Novel identities of Bernoulli polynomials involving closed forms for some definite integrals, Symmetry, 14 (2022), 2284. https://doi.org/10.3390/sym14112284 doi: 10.3390/sym14112284
![]() |