We investigate the space-time decay rates of solutions to the 3D Cauchy problem of the compressible Oldroyd-B system with diffusive properties and without viscous dissipation. The main novelties of this paper involve two aspects: On the one hand, we prove that the weighted rate of $ k $-th order spatial derivative (where $ 0\leq k\leq3 $) of the global solution $ (\rho, u, \eta, \tau) $ is $ t^{-\frac{3}{4}+\frac{k}{2}+\gamma} $ in the weighted Lebesgue space $ L^2_{\gamma} $. On the other hand, we show that the space-time decay rate of the $ m $-th order spatial derivative (where $ m \in\left [0, 2\right] $) of the extra stress tensor of the field in $ L^2_{\gamma } $ is $ (1+t)^{-\frac{5}{4}-\frac{m}{2}+\gamma} $, which is faster than that of the velocity. The proofs are based on delicate weighted energy methods and interpolation tricks.
Citation: Yangyang Chen, Yixuan Song. Space-time decay rate of the 3D diffusive and inviscid Oldroyd-B system[J]. AIMS Mathematics, 2024, 9(8): 20271-20303. doi: 10.3934/math.2024987
We investigate the space-time decay rates of solutions to the 3D Cauchy problem of the compressible Oldroyd-B system with diffusive properties and without viscous dissipation. The main novelties of this paper involve two aspects: On the one hand, we prove that the weighted rate of $ k $-th order spatial derivative (where $ 0\leq k\leq3 $) of the global solution $ (\rho, u, \eta, \tau) $ is $ t^{-\frac{3}{4}+\frac{k}{2}+\gamma} $ in the weighted Lebesgue space $ L^2_{\gamma} $. On the other hand, we show that the space-time decay rate of the $ m $-th order spatial derivative (where $ m \in\left [0, 2\right] $) of the extra stress tensor of the field in $ L^2_{\gamma } $ is $ (1+t)^{-\frac{5}{4}-\frac{m}{2}+\gamma} $, which is faster than that of the velocity. The proofs are based on delicate weighted energy methods and interpolation tricks.
[1] | C. Ai, Z. Tan, J. Zhou, Global existence and decay estimate of solution to rate type viscoelastic fluids, J. Differ. Equations, 377 (2023), 188–220. https://doi.org/10.1016/j.jde.2023.08.039 doi: 10.1016/j.jde.2023.08.039 |
[2] | M. Amara, D. Capatina-Papaghiuc, D. Trujillo, Stabilized finite element method for Navier-Stokes equations with physical boundary conditions, Math. Comp., 76 (2007), 1195–1217. https://doi.org/10.1090/S0025-5718-07-01929-1 doi: 10.1090/S0025-5718-07-01929-1 |
[3] | J. W. Barrett, Y. Lu, E. Süli, Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model, Commun. Math. Sci., 15 (2017), 1265–1323. https://doi.org/10.4310/CMS.2017.v15.n5.a5 doi: 10.4310/CMS.2017.v15.n5.a5 |
[4] | M. Bathory, M. Bulíček, J. Málek, Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion, Adv. Nonlinear Anal., 10 (2021), 501–521. https://doi.org/10.1515/anona-2020-0144 doi: 10.1515/anona-2020-0144 |
[5] | Q. Chen, Z. Tan, Time decay of solutions to the compressible Euler equations with damping, Kinet. Relat. Models, 7 (2014), 605–619. https://doi.org/10.3934/krm.2014.7.605 doi: 10.3934/krm.2014.7.605 |
[6] | Y. Chen, Z. Luo, Y. Zhang, Space-time decay rates for the 3D full compressible MHD equations, Discrete Cont. Dyn.-B, 29 (2024), 245–281. https://doi.org/10.3934/dcdsb.2023095 doi: 10.3934/dcdsb.2023095 |
[7] | L. Chupin, S. Martin, Viscoelastic flows in a rough channel: A multiscale analysis, Ann. I. H. Poincaré C Anal. Non Linéaire, 34 (2017), 483–508. https://doi.org/10.1016/j.anihpc.2016.01.002 doi: 10.1016/j.anihpc.2016.01.002 |
[8] | P. Constantin, M. Kliegl, Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress, Arch. Ration. Mech. An., 206 (2012), 725–740. https://doi.org/10.1007/s00205-012-0537-0 doi: 10.1007/s00205-012-0537-0 |
[9] | T. M. Elgindi, F. Rousset, Global regularity for some Oldroyd-B type models, Commun. Pure Appl. Math., 68 (2015), 2005–2021. https://doi.org/10.1002/cpa.21563 doi: 10.1002/cpa.21563 |
[10] | D. Fang, M. Hieber, R. Zi, Global existence results for Oldroyd-B fluids in exterior domains: The case of non-small coupling parameters, Math. Ann., 357 (2013), 687–709. https://doi.org/10.1007/s00208-013-0914-5 doi: 10.1007/s00208-013-0914-5 |
[11] | D. Fang, R. Zi, Strong solutions of 3D compressible Oldroyd-B fluids, Math. Method. Appl. Sci., 36 (2013), 1423–1439. https://doi.org/10.1002/mma.2695 doi: 10.1002/mma.2695 |
[12] | J. Huang, Y. Wang, H. Wen, R. Zi, Optimal time-decay estimates for an Oldroyd-B model with zero viscosity, J. Differ. Equations, 306 (2022), 456–491. https://doi.org/10.1016/j.jde.2021.10.046 doi: 10.1016/j.jde.2021.10.046 |
[13] | I. Kukavica, On the weighted decay for solutions of the Navier-Stokes system, Nonlinear Anal., 70 (2009), 2466–2470. https://doi.org/10.1016/j.na.2008.03.031 doi: 10.1016/j.na.2008.03.031 |
[14] | I. Kukavica, J. J. Torres, Weighted $L^p$ decay for solutions of the Navier-Stokes equations, Commun. Part. Diff. Eq., 32 (2007), 819–831. https://doi.org/10.1080/03605300600781659 doi: 10.1080/03605300600781659 |
[15] | B. Lai, J. Lin, C. Wang, Forward self-similar solutions to the viscoelastic Navier-Stokes equation with damping, SIAM J. Math. Anal., 49 (2017), 501–529. https://doi.org/10.1137/16M1060340 doi: 10.1137/16M1060340 |
[16] | S. Liu, Y. Lu, H. Wen, On the Cauchy problem for a compressible Oldroyd-B model without stress diffusion, SIAM J. Math. Anal., 53 (2021), 6216–6242. https://doi.org/10.1137/20M1362243 doi: 10.1137/20M1362243 |
[17] | S. Liu, W. Wang, H. Wen, The Cauchy problem for an inviscid Oldroyd-B model in three dimensions: Global well posedness and optimal decay rates, P. Roy. Soc. Edinb. A, 153 (2023), 441–490. https://doi.org/10.1017/prm.2022.2 doi: 10.1017/prm.2022.2 |
[18] | Z. Luo, Q. Ye, Y. Zhang, Space-time decay rate for the two-phase flow model, Z. Angew. Math. Phys., 73 (2022), 1–34. https://doi.org/10.1007/s00033-022-01884-9 doi: 10.1007/s00033-022-01884-9 |
[19] | Z. Luo, Y. Zhang, Optimal large-time behavior of solutions to the full compressible Navier-Stokes equations with large initial data, J. Evol. Equ., 22 (2022), 1–35. https://doi.org/10.1007/s00028-022-00841-3 doi: 10.1007/s00028-022-00841-3 |
[20] | A. J. Majda, A. L. Bertozzi, Vorticity and incompressible flow. Cambridge texts in applied mathematics, Appl. Mech. Rev., 55 (2002), B77–B78. https://doi.org/10.1115/1.1483363 doi: 10.1115/1.1483363 |
[21] | L. Molinet, R. Talhouk, On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law, Nodea-Nonlinear Diff., 11 (2004), 349–359. https://doi.org/10.1007/s00030-004-1073-x doi: 10.1007/s00030-004-1073-x |
[22] | V. Sohinger, R. M. Strain, The Boltzmann equation, Besov spaces, and optimal time decay rates in $\mathbb{R}_x^n$, Adv. Math., 261 (2014), 274–332. https://doi.org/10.1016/j.aim.2014.04.012 doi: 10.1016/j.aim.2014.04.012 |
[23] | S. Takahashi, A weighted equation approach to decay rate estimates for the Navier-Stokes equations, Nonlinear Anal., 37 (1999), 751–789. https://doi.org/10.1016/S0362-546X(98)00070-4 doi: 10.1016/S0362-546X(98)00070-4 |
[24] | P. Wang, J. Wu, X. Xu, Y. Zhong, Sharp decay estimates for Oldroyd-B model with only fractional stress tensor diffusion, J. Funct. Anal., 282 (2022), 109332. https://doi.org/10.1016/j.jfa.2021.109332 doi: 10.1016/j.jfa.2021.109332 |
[25] | W. Wang, H. Wen, The Cauchy problem for an Oldroyd-B model in three dimensions, Math. Mod. Meth. Appl. Sci., 30 (2020), 139–179. https://doi.org/10.1142/s0218202520500049 doi: 10.1142/s0218202520500049 |
[26] | Y. Wang, Optimal time-decay estimates for a diffusive Oldroyd-B model, Z. Angew. Math. Phys., 74 (2023), 1–13. https://doi.org/10.1007/s00033-022-01902-w doi: 10.1007/s00033-022-01902-w |
[27] | S. Weng, Space-time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations, J. Funct. Anal., 270 (2016), 2168–2187. https://doi.org/10.1016/j.jfa.2016.01.021 doi: 10.1016/j.jfa.2016.01.021 |
[28] | Q. Ye, Y. Zhang, Space-time decay rate of the compressible adiabatic flow through porous media in $\mathbb{R}^3$, Bull. Malays. Math. Sci. Soc., 46 (2023), 1–34. https://doi.org/10.1007/s40840-023-01529-8 doi: 10.1007/s40840-023-01529-8 |
[29] | X. Zhai, Y. Li, Global wellposedness and large time behavior of solutions to the $N$-dimensional compressible Oldroyd-B model, J. Differ. Equations, 290 (2021), 116–146. https://doi.org/10.1016/j.jde.2021.04.027 doi: 10.1016/j.jde.2021.04.027 |
[30] | Z. Zhou, C. Zhu, R. Zi, Global well-posedness and decay rates for the three dimensional compressible Oldroyd-B model, J. Differ. Equations, 265 (2018), 1259–1278. https://doi.org/10.1016/j.jde.2018.04.003 doi: 10.1016/j.jde.2018.04.003 |
[31] | Y. Zhu, Global existence of classical solutions for the 3D generalized compressible Oldroyd-B model, Math. Method. Appl. Sci., 43 (2020), 6517–6528. https://doi.org/10.1002/mma.6393 doi: 10.1002/mma.6393 |
[32] | R. Zi, Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter, Discrete Contin. Dyn. Syst., 37 (2017), 6437–6470. https://doi.org/10.3934/dcds.2017279 doi: 10.3934/dcds.2017279 |