The primary objective of this study was to explore the behavior of an n-coupled system of generalized Sturm-Liouville (GSL) and Langevin equations under a modified ABC fractional derivative. We aimed to analyze the dynamics of the system and gain insights into how this operator influences the conditions for the existence and uniqueness of solutions. We established the existence and uniqueness of solutions by employing the Banach contraction principle and Leray-Schauder's alternative fixed-point theorem. We also investigated the Hyers-Ulam stability of the system. This analysis allows us to understand the stability properties of the solutions and evaluate their sensitivity to perturbations. Furthermore, we employed Lagrange's interpolation polynomials to produce a numerical scheme for the influenza epidemic model. By combining theoretical analysis, mathematical principles, and numerical simulations, this study contributes to enriching our understanding of the behavior of the system and offers insights into its dynamics and practical applications in epidemiology.
Citation: Elkhateeb S. Aly, Mohammed A. Almalahi, Khaled A. Aldwoah, Kamal Shah. Criteria of existence and stability of an n-coupled system of generalized Sturm-Liouville equations with a modified ABC fractional derivative and an application to the SEIR influenza epidemic model[J]. AIMS Mathematics, 2024, 9(6): 14228-14252. doi: 10.3934/math.2024691
The primary objective of this study was to explore the behavior of an n-coupled system of generalized Sturm-Liouville (GSL) and Langevin equations under a modified ABC fractional derivative. We aimed to analyze the dynamics of the system and gain insights into how this operator influences the conditions for the existence and uniqueness of solutions. We established the existence and uniqueness of solutions by employing the Banach contraction principle and Leray-Schauder's alternative fixed-point theorem. We also investigated the Hyers-Ulam stability of the system. This analysis allows us to understand the stability properties of the solutions and evaluate their sensitivity to perturbations. Furthermore, we employed Lagrange's interpolation polynomials to produce a numerical scheme for the influenza epidemic model. By combining theoretical analysis, mathematical principles, and numerical simulations, this study contributes to enriching our understanding of the behavior of the system and offers insights into its dynamics and practical applications in epidemiology.
[1] | H. Ahmad, M. N. Khan, I. Ahmad, M. Omri, M. F. Alotaibi, A meshless method for numerical solutions of linear and nonlinear time-fractional Black-Scholes models, AIMS Mathematics, 8 (2023), 19677–19698. http://dx.doi.org/10.3934/math.20231003 doi: 10.3934/math.20231003 |
[2] | H. Ahmad, D. U. Ozsahin, U. Farooq, M. A. Fahmy, M. D. Albalwi, H. Abu-Zinadah, Comparative analysis of new approximate analytical method and Mohand variational transform method for the solution of wave-like equations with variable coefficients, Results Phys., 51 (2023), 106623. http://dx.doi.org/10.1016/j.rinp.2023.106623 doi: 10.1016/j.rinp.2023.106623 |
[3] | A. A. H. Ahmadini, M. Khuddush, S. N. Rao, Multiple positive solutions for a system of fractional order BVP with p-Laplacian operators and parameters, Axiom, 12 (2023), 974. http://doi.org/10.3390/axioms12100974 doi: 10.3390/axioms12100974 |
[4] | K. A. Aldwoah, M. A. Almalahi, M. A. Abdulwasaa, K. Shah, S. V. Kawale, M. Awadalla, et al., Mathematical analysis and numerical simulations of the piecewise dynamics model of Malaria transmission: A case study in Yemen, AIMS Mathematics, 9 (2024), 4376–4408. http://dx.doi.org/10.3934/math.2024216 doi: 10.3934/math.2024216 |
[5] | K. A. Aldwoah, M. A. Almalahi, K. Shah, Theoretical and numerical simulations on the hepatitis B virus model through a piecewise fractional order, Fractal Fract., 7 (2023), 844. http://dx.doi.org/10.3390/fractalfract7120844 doi: 10.3390/fractalfract7120844 |
[6] | M. A. Almalahi, S. K. Panchal, W. Shatanawi, M. S. Abdo, K. Shah, K. Abodayeh, Analytical study of transmission dynamics of 2019-nCoV pandemic via fractal fractional operator, Results Phys., 24 (2021), 104045. http://dx.doi.org/10.1016/j.rinp.2021.104045 doi: 10.1016/j.rinp.2021.104045 |
[7] | M. Al-Refai, Proper inverse operators of fractional derivatives with nonsingular kernels, Rend. Circ. Mat. Palermo, II. Ser., 71 (2022), 525–535. http://dx.doi.org/10.1007/s12215-021-00638-2 doi: 10.1007/s12215-021-00638-2 |
[8] | M. Al-Refai, D. Baleanu, On an extension of the operator with Mittag-Leffler kernel, Fractals, 30 (2022), 2240129. http://dx.doi.org/10.1142/S0218348X22401296 doi: 10.1142/S0218348X22401296 |
[9] | S. M. Alzahrani, R. Saadeh, M. A. Abdoon, A. Qazza, F. El Guma, M. Berir, Numerical simulation of an influenza epidemic: Prediction with fractional SEIR and the ARIMA model, Appl. Math. Inf. Sci., 18 (2024), 1–12. http://dx.doi.org/10.18576/amis/180101 doi: 10.18576/amis/180101 |
[10] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Sci., 20 (2016), 763–769. http://dx.doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[11] | D. Baleanu, J. Alzabut, J. M. Jonnalagadda, Y. Adjabi, M. M. Matar, A coupled system of generalized Sturm-Liouville problems and Langevin fractional differential equations in the framework of nonlocal and nonsingular derivatives, Adv. Differ. Equ., 239 (2020), 239. http://dx.doi.org/10.1186/s13662-020-02690-1 doi: 10.1186/s13662-020-02690-1 |
[12] | I. M. Batiha, A. Ouannas, R. Albadarneh, A. A. Al-Nana, S. Momani, Existence and uniqueness of solutions for generalized Sturm-Liouville and Langevin equations via Caputo-Hadamard fractional-order operator, Eng. Comput., 39 (2022), 2581–2603. https://doi.org/10.1108/EC-07-2021-0393 doi: 10.1108/EC-07-2021-0393 |
[13] | A. Boutiara, M. S. Abdo, M. A. Almalahi, K. Shah, B. Abdalla, T. Abdeljawad, Study of Sturm-Liouville boundary value problems with p-Laplacian by using generalized form of fractional order derivative, AIMS Mathematics, 7 (2022), 18360–18376. http://dx.doi.org/10.3934/math.20221011 doi: 10.3934/math.20221011 |
[14] | A. Boutiara, M. Benbachir, S. Etemad, S. Rezapour, Kuratowski MNC method on a generalized fractional Caputo Sturm-Liouville-Langevin q-difference problem with generalized Ulam-Hyers stability, Adv. Differ. Equ., 2021 (2021), 454. http://dx.doi.org/10.1186/s13662-021-03619-y doi: 10.1186/s13662-021-03619-y |
[15] | A. Ercan, Comparative analysis for fractional nonlinear Sturm-Liouville equations with singular and non-singular kernels, AIMS Mathematics, 7 (2022), 13325–13343. http://dx.doi.org/10.3934/math.2022736 doi: 10.3934/math.2022736 |
[16] | A. Berhail, N. Tabouche, M. M. Matar, J. Alzabut, Boundary value problem defined by system of generalized Sturm-Liouville and Langevin Hadamard fractional differential equations, Math. Methods Appl. Sci., 2020. http://dx.doi.org/10.1002/mma.6507 |
[17] | K. S. Eiman, M. Sarwar, T. Abdeljawad, On rotavirus infectious disease model using piecewise modified ABC fractional order derivative, Netw. Heterog. Media, 19 (2024), 214–234. http://dx.doi.org/10.3934/nhm.2024010 doi: 10.3934/nhm.2024010 |
[18] | R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Heidelberg: Springer Berlin, 2014. |
[19] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8 |
[20] | T. Guo, O. Nikan, Z. Avazzadeh, W. Qiu, Efficient alternating direction implicit numerical approaches for multi-dimensional distributed-order fractional integro differential problems, Comput. Appl. Math., 41 (2022), 236. http://dx.doi.org/10.1007/s40314-022-01934-y doi: 10.1007/s40314-022-01934-y |
[21] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[22] | H. Khan, J. Alzabut, J. F. Gómez-Aguilar, A. Alkhazan, Essential criteria for existence of solution of a modified-ABC fractional order smoking model, Ain Shams Eng. J., 15 (2024), 102646. http://dx.doi.org/10.1016/j.asej.2024.102646 doi: 10.1016/j.asej.2024.102646 |
[23] | H. Khan, J. Alzabut, W. F. Alfwzan, H. Gulzar, Nonlinear dynamics of a piecewise modified ABC fractional-order leukemia model with symmetric numerical simulations, Symmetry, 15 (2023), 1338. http://dx.doi.org/10.3390/sym15071338 doi: 10.3390/sym15071338 |
[24] | H. Khan, J. Alzabut, H. Gulzar, Existence of solutions for hybrid modified ABC-fractional differential equations with p-Laplacian operator and an application to a waterborne disease model, Alex. Eng. J., 70 (2023), 665–672. http://dx.doi.org/10.1016/j.aej.2023.02.045 doi: 10.1016/j.aej.2023.02.045 |
[25] | H. Khan, J. Alzabut, D. Baleanu, G. Alobaidi, M. U. Rehman, Existence of solutions and a numerical scheme for a generalized hybrid class of $n$-coupled modified ABC-fractional differential equations with an application, AIMS Mathematics, 8 (2023), 6609–6625. http://dx.doi.org/10.3934/math.2023334 doi: 10.3934/math.2023334 |
[26] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006), 1–523. |
[27] | W. Li, J. Ji, L. Huang, L. Zhang, Global dynamics and control of malicious signal transmission in wireless sensor networks, Nonlinear Anal. Hybrid Syst., 48 (2023), 101324. http://dx.doi.org/10.1016/j.nahs.2022.101324 doi: 10.1016/j.nahs.2022.101324 |
[28] | L. J. Muhammad, E. A. Algehyne, S. S. Usman, A. Ahmad, C. Chakraborty, I. A. Mohammed, Supervised machine learning models for prediction of COVID-19 infection using epidemiology dataset, SN Comput. Sci., 2 (2021), 11. http://dx.doi.org/10.1007/s42979-020-00394-7 doi: 10.1007/s42979-020-00394-7 |
[29] | I. Podlubny, Fractional differential equations, Elsevier, 198 (1998), 1–340. |
[30] | M. Rafiq, K. Muhammad, H. Ahmad, A. Saliu, Critical analysis for nonlinear oscillations by least square, Sci. Rep., 14 (2024), 1456. http://dx.doi.org/10.1038/s41598-024-51706-3 doi: 10.1038/s41598-024-51706-3 |
[31] | M. ur Rahman, M. Yavuz, M. Arfan, A. Sami, Theoretical and numerical investigation of a modified ABC fractional operator for the spread of polio under the effect of vaccination, AIMS Biophys., 11 (2024), 97–120. http://dx.doi.org/10.3934/biophy.2024007 doi: 10.3934/biophy.2024007 |
[32] | S. N. Rao, M. Alesemi, On a coupled system of fractional differential equations with nonlocal non-separated boundary conditions, Adv. Differ. Equ., 2019 (2019), 97. https://doi.org/10.1186/s13662-019-2035-2 doi: 10.1186/s13662-019-2035-2 |
[33] | H. O. Sidi, M. J. Huntul, M. O. Sidi, H. Emadifar, Identifying an unknown coefficient in the fractional parabolic differential equation, Results Appl. Math., 19 (2023), 100356. https://doi.org/10.1016/j.rinam.2023.100386 doi: 10.1016/j.rinam.2023.100386 |
[34] | D. R. Smart, Fixed point theorems, CUP Archive, 1980. |
[35] | C. Urs, Coupled fixed point theorems and applications to periodic boundary value problems, Miskolc Math. Notes, 14 (2013), 323–333. http://dx.doi.org/10.18514/MMN.2013.598 doi: 10.18514/MMN.2013.598 |
[36] | B. Wang, Q. Zhu, S. Li, Stabilization of discrete-time hidden semi-Markov jump linear systems with partly unknown emission probability matrix, IEEE Trans. Automat. Control, 99 (2023), 1952–1959. http://dx.doi.org/10.1109/TAC.2023.3272190 doi: 10.1109/TAC.2023.3272190 |