The concepts of cordial labeling, signed product cordiality, and logical cordiality have been introduced independently by different researchers as distinct labeling schemes. In this paper, we demonstrate the equivalence of these concepts. Specifically, we prove that a graph $ G $ is cordial if and only if it is signed product cordial, if and only if it is logically cordial. Additionally, we establish that a graph $ G $ admits permuted cordial labeling if and only if it exhibits cubic roots cordial labeling. Furthermore, we leverage this newfound equivalence to analyze the cordiality properties of several standard graphs.
Citation: M. E. Abdel-Aal, S. A. Bashammakh. A study on the varieties of equivalent cordial labeling graphs[J]. AIMS Mathematics, 2024, 9(12): 34720-34733. doi: 10.3934/math.20241653
The concepts of cordial labeling, signed product cordiality, and logical cordiality have been introduced independently by different researchers as distinct labeling schemes. In this paper, we demonstrate the equivalence of these concepts. Specifically, we prove that a graph $ G $ is cordial if and only if it is signed product cordial, if and only if it is logically cordial. Additionally, we establish that a graph $ G $ admits permuted cordial labeling if and only if it exhibits cubic roots cordial labeling. Furthermore, we leverage this newfound equivalence to analyze the cordiality properties of several standard graphs.
[1] | A. Rosa, On certain valuations of the vertices of a graph, J. Int. Symp., 1967. |
[2] | M. R. Z. E. Deen, G. Elmahdy, New classes of graphs with edge $\delta$-graceful labeling, AIMS Math., 7 (2022), 3554–3589. https://doi.org/10.3934/math.2022197 doi: 10.3934/math.2022197 |
[3] | M. A. Seoud, M. E. Abdel-Aal, On odd graceful graphs, Ars Comb., 108 (2013), 161–185. |
[4] | M. E. Abdel-Aal, Further results on odd harmonious graphs, Int. J. Appl. Graph Theory Wireless Ad Hoc Networks Sensor Networks, 8 (2016), 1–14. https://doi.org/10.5121/jgraphoc.2016.8401 doi: 10.5121/jgraphoc.2016.8401 |
[5] | B. Mari, R. S. Jeyaraj, Radio number of 2-super subdivision for path related graphs, AIMS Math., 9 (2024), 8214–8229. https://doi.org/10.3934/math.2024399 doi: 10.3934/math.2024399 |
[6] | M. E. Abdel-Aal, S. Minion, C. Barrientos, D. Williams, The mean labeling of some crowns, J. Algorithms Comput., 45 (2014), 43–54. https://doi.org/10.22059/JAC.2014.7920 doi: 10.22059/JAC.2014.7920 |
[7] | J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb., 6 (2022), DS6. |
[8] | I. Cahit, A weaker version of graceful and harmonious graphs, Ars Comb., 23 (1987), 201–207. |
[9] | J. B. Babujee, S. Loganathan, On signed product cordial labeling, Appl. Math., 2 (2011), 1525–1530. https://doi.org/10.4236/am.2011.212216 doi: 10.4236/am.2011.212216 |
[10] | A. Elrokh, M. M. A. Al-Shamiri, A. A. El-hay, A novel problem to solve the logically labeling of corona between paths and cycles, J. Math., 12 (2022), 2312206. https://doi.org/10.1155/2022/2312206 doi: 10.1155/2022/2312206 |
[11] | A. Elrokh, R. Ismail, A. A. El-hay, Y. Elmshtaye, On cubic roots cordial labeling for some graphs, Symmetry, 15 (2023), 990. https://doi.org/10.3390/sym15050990 doi: 10.3390/sym15050990 |
[12] | A. Elrokh, M. M. A. Al-Shamiri, M. M. A. Almazah, A. A. El-hay, A novel problem for solving permuted cordial labeling of graphs, Symmetry, 15 (2023), 825. https://doi.org/10.3390/sym15040825 doi: 10.3390/sym15040825 |
[13] | M. Hovey, A-cordial graphs, Discrete Math., 93 (1991), 183–194. https://doi.org/10.1016/0012-365X(91)90254-Y doi: 10.1016/0012-365X(91)90254-Y |
[14] | R. L. Graham, N. J. A. Sloane, On additive bases and harmonious graphs, SIAM J. Algebraic Discrete Methods, 1 (1980), 382–404. https://doi.org/10.1137/0601045 doi: 10.1137/0601045 |
[15] | G. Chang, D. Hsu, D. Rogers, Additive variations on a graceful theme, Utilitas Math., 32 (1987), 181–197. |
[16] | M. D. Raisinghania, R. S. S. Aggarwal, Modern algebra, Chand Company (PVT), 1987. |
[17] | S. Nada, A. Elrokh, A. A. El-hay, On signed product cordial of lemniscate graph and its second power, Turk. J. Comput. Math. Educ., 13 (2022), 905–913. |
[18] | A. Elrokh, Y. Elmshtaye, A. A. El-hay, The cordiality of cone and lemniscate graphs, Appl. Math. Inf. Sci., 16 (2022), 1027–1034. https://doi.org/10.18576/amis/160620 doi: 10.18576/amis/160620 |
[19] | S. Nada, A. Elrokh, A. Elrayes, A. Rabie, The signed product cordial for corona of paths and fourth power of paths, Int. J.Math. Combin., 4 (2019), 102–111. |
[20] | S. Nada, A. Elrokh, A. Elrayes, A. Rabie, Cordial labeling of corona product between paths and fourth power of paths, Iran. J. Math. Sci. Inf., 18 (2020), 107–115. https://doi.org/10.61186/ijmsi.18.2.107 doi: 10.61186/ijmsi.18.2.107 |
[21] | S. Nada, A. Elrayes, A. Elrokh, A. Rabie, Signed product cordial of the sum and union of two fourth power of paths and cycles, Mach. Learn. Res., 4 (2022), 45–50. https://doi.org/10.11648/J.MLR.20190404.11 doi: 10.11648/J.MLR.20190404.11 |
[22] | S. Nada, A. Elrayes, A. Elrokh, A. Rabie, The cordiality of the sum and union of the fourth power of paths with cycles, Mach. Learn. Res., 2019. |
[23] | A. A. El-hay, A. Rabie, Signed product cordial labeling of corona product between paths and second power of fan graphs, Ital. J. Pure Appl. Math., 48 (2022), 287–294. |
[24] | A. Elrokh, S. Nada, E. Elshafey, Cordial labeling of Corona product of path graph and second power of Fan graph, Ital. Open J. Discrete Math., 11 (2021), 31–42. https://doi.org/10.4236/ojdm.2021.112003 doi: 10.4236/ojdm.2021.112003 |
[25] | A. T. Diab, On cordial labelings of the second power of paths with other graphs, Ars Comb., 97 (2010), 327–343. |
[26] | E. A. Elsakhawy, A. T. Diab, On cordial labeling of third power of path with other graphs, Appl. Math. Inf. Sci., 18 (2024), 1195–1207. |
[27] | E. A. Elsakhaw, The cordiality for the join of pairs of the third power of paths, Appl. Math. Inf. Sci., 16 (2022), 611–615. http://doi.org/10.18576/amis/160414 doi: 10.18576/amis/160414 |
[28] | P. Ghosh, A. Pal, Special classes of signed product cordial graphs, Int. J. Comput. Sci. Inf. Secur., 15 (2017), 14–23. |
[29] | P. P. Ulaganathan, B. Selvam, P. V. kumar, Signed product cordial labeling in duplicate graphs of bistar, double star and triangular ladder graph, Int. J. Math. Trends Technol., 33 (2016), 19–24. https://doi.org/10.14445/22315373/IJMTT-V33P505 doi: 10.14445/22315373/IJMTT-V33P505 |
[30] | S. S. Rajana, J. B. Babujeeb, Further results on signed product cordial labeling, Rev. Argent. Clin. Psicol., 32 (2023), 1–4. |