Research article

A note on 2D Navier-Stokes system in a bounded domain

  • Received: 05 July 2024 Revised: 13 August 2024 Accepted: 14 August 2024 Published: 26 August 2024
  • MSC : 35Q30, 76D03, 76D05

  • This paper poses a new question and proves a related result. Particularly, the nonexistence of a nontrivial time-periodic solution to the Navier–Stokes system is proved in a bounded domain in $ \mathbb{R}^2 $.

    Citation: Jishan Fan, Tohru Ozawa. A note on 2D Navier-Stokes system in a bounded domain[J]. AIMS Mathematics, 2024, 9(9): 24908-24911. doi: 10.3934/math.20241213

    Related Papers:

  • This paper poses a new question and proves a related result. Particularly, the nonexistence of a nontrivial time-periodic solution to the Navier–Stokes system is proved in a bounded domain in $ \mathbb{R}^2 $.



    加载中


    [1] L. C. Berselli, M. Romito, On the existence and uniqueness of weak solutions for a vorticity seeding model, SIAM J. Math. Anal., 37 (2006), 1780–1799. https://doi.org/10.1137/04061249X doi: 10.1137/04061249X
    [2] T. Qi, On an evolutionary system of Ginzburg-Landau equations with fixed total magnetic flux, Commun. Part. Diff. Eq., 20 (1995), 1–36. https://doi.org/10.1080/03605309508821085 doi: 10.1080/03605309508821085
    [3] J. Fan, T. Ozawa, Long time behavior of a 2D Ginzburg-Landau model with fixed total magnetic flux, International Journal of Mathematical Analysis, 17 (2023), 109–117. https://doi.org/10.12988/ijma.2023.912516 doi: 10.12988/ijma.2023.912516
    [4] P. L. Lions, Mathematical topics in fluid mechanics: Volume 2: compressible models, New York: Oxford University Press, 1998.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(474) PDF downloads(49) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog