Research article

Applications of fuzzy differential subordination theory on analytic $ p $ -valent functions connected with $ \mathfrak{q} $-calculus operator

  • Received: 27 April 2024 Revised: 07 June 2024 Accepted: 18 June 2024 Published: 01 July 2024
  • MSC : 30C45, 30C80

  • In recent years, the concept of fuzzy set has been incorporated into the field of geometric function theory, leading to the evolution of the classical concept of differential subordination into that of fuzzy differential subordination. In this study, certain generalized classes of $ p $ -valent analytic functions are defined in the context of fuzzy subordination. It is highlighted that for particular functions used in the definitions of those classes, the classes of fuzzy $ p $-valent convex and starlike functions are obtained, respectively. The new classes are introduced by using a $ \mathfrak{q} $-calculus operator defined in this investigation using the concept of convolution. Some inclusion results are discussed concerning the newly introduced classes based on the means given by the fuzzy differential subordination theory. Furthermore, connections are shown between the important results of this investigation and earlier ones. The second part of the investigation concerns a new generalized $ \mathfrak{q} $-calculus operator, defined here and having the $ (p, \mathfrak{q)} $-Bernardi operator as particular case, applied to the functions belonging to the new classes introduced in this study. Connections between the classes are established through this operator.

    Citation: Ekram E. Ali, Georgia Irina Oros, Rabha M. El-Ashwah, Abeer M. Albalahi. Applications of fuzzy differential subordination theory on analytic $ p $ -valent functions connected with $ \mathfrak{q} $-calculus operator[J]. AIMS Mathematics, 2024, 9(8): 21239-21254. doi: 10.3934/math.20241031

    Related Papers:

  • In recent years, the concept of fuzzy set has been incorporated into the field of geometric function theory, leading to the evolution of the classical concept of differential subordination into that of fuzzy differential subordination. In this study, certain generalized classes of $ p $ -valent analytic functions are defined in the context of fuzzy subordination. It is highlighted that for particular functions used in the definitions of those classes, the classes of fuzzy $ p $-valent convex and starlike functions are obtained, respectively. The new classes are introduced by using a $ \mathfrak{q} $-calculus operator defined in this investigation using the concept of convolution. Some inclusion results are discussed concerning the newly introduced classes based on the means given by the fuzzy differential subordination theory. Furthermore, connections are shown between the important results of this investigation and earlier ones. The second part of the investigation concerns a new generalized $ \mathfrak{q} $-calculus operator, defined here and having the $ (p, \mathfrak{q)} $-Bernardi operator as particular case, applied to the functions belonging to the new classes introduced in this study. Connections between the classes are established through this operator.


    加载中


    [1] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
    [2] G. I. Oros, G. Oros, The notion of subordination in fuzzy sets theory, General Mathematics, 19 (2011), 97–103.
    [3] S. S. Miller, P. T. Mocanu, Second order-differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289–305. https://doi.org/10.1016/0022-247X(78)90181-6 doi: 10.1016/0022-247X(78)90181-6
    [4] S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157–172. https://doi.org/10.1307/mmj/1029002507 doi: 10.1307/mmj/1029002507
    [5] G. I. Oros, G. Oros, Fuzzy differential subordination, Acta Universitatis Apulensis, 30 (2012), 55–64.
    [6] I. Dzitac, F. G. Filip, M. J. Manolescu, Fuzzy logic is not fuzzy: world-renowned computer scientist Lotfi A. Zadeh, Int. J. Comput. Commun., 12 (2017), 748–789. https://doi.org/10.15837/ijccc.2017.6.3111 doi: 10.15837/ijccc.2017.6.3111
    [7] G. I. Oros, G. Oros, Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babes-Bolyai Math., 57 (2012), 239–248.
    [8] E. E. Ali, M. Vivas-Cortez, R. M. El-Ashwah, New results about fuzzy $\gamma $-convex functions connected with the $\mathfrak{q}$-analogue multiplier-Noor integral operator, AIMS Mathematics, 9 (2024), 5451–5465. https://doi.org/10.3934/math.2024263 doi: 10.3934/math.2024263
    [9] E. E. Ali, M. Vivas-Cortez, R. M. El-Ashwah, A. M. Albalahi, Fuzzy subordination results for meromorphic functions connected with a linear operator, Fractal Fract., 8 (2024), 308. https://doi.org/10.3390/fractalfract8060308 doi: 10.3390/fractalfract8060308
    [10] G. I. Oros, Briot-Bouquet fuzzy differential subordination, Analele Universitatii Oradea Fasc. Matematica, 2 (2012), 83–97.
    [11] F. H. Jackson, On $\mathfrak{q}$-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
    [12] F. H. Jackson, On $\mathfrak{q}$-definite integrals, The Quarterly Journal of Pure and Applied Mathematics, 41 (1910), 193–203.
    [13] R. D. Carmichael, The general theory of linear $\mathfrak{q}$-difference equations, Am. J. Math., 34 (1912), 147–168.
    [14] T. E. Mason, On properties of the solution of linear $\mathfrak{q }$-difference equations with entire function coefficients, Am. J. Math., 37 (1915), 439–444. https://doi.org/10.2307/2370216 doi: 10.2307/2370216
    [15] W. J. Trjitzinsky, Analytic theory of linear difference equations, Acta Math., 61 (1933), 1–38. https://doi.org/10.1007/BF02547785 doi: 10.1007/BF02547785
    [16] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables, Theory and Application, 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407
    [17] H. M. Srivastava, Operators of basic (or $\mathfrak{q}$-) calculus and fractional $\mathfrak{q}$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0
    [18] H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex A., 22 (2021), 1501–1520.
    [19] H. M. Srivastava, An introductory overview of Bessel polynomials, the generalized Bessel polynomials and the $\mathfrak{q}$-Bessel polynomials, Symmetry, 15 (2023), 822. https://doi.org/10.3390/sym15040822 doi: 10.3390/sym15040822
    [20] E. E. Ali, T. Bulboaca, Subclasses of multivalent analytic functions associated with a $\mathfrak{q}$-difference operator, Mathematics, 8 (2020), 2184. https://doi.org/10.3390/math8122184 doi: 10.3390/math8122184
    [21] E. E. Ali, A. M. Lashin, A. M. Albalahi, Coefficient estimates for some classes of biunivalent function associated with Jackson $\mathfrak{q}$-difference operator, J. Funct. Space., 2022 (2022), 2365918. https://doi.org/10.1155/2022/2365918 doi: 10.1155/2022/2365918
    [22] E. E. Ali, H. M. Srivastava, A. M. Y. Lashin, A. M. Albalahi, Applications of some subclasses of meromorphic functions associated with the $\mathfrak{q}$-derivatives of the $\mathfrak{q}$-binomials, Mathematics, 11 (2023), 2496. https://doi.org/10.1155/2022/2365918 doi: 10.1155/2022/2365918
    [23] E. E. Ali, H. M. Srivastava, A. M. Albalahi, Subclasses of $p$-valent $k$-uniformly convex and starlike functions defined by the $\mathfrak{ q}$-derivative operator, Mathematics, 11 (2023), 2578. https://doi.org/10.3390/math11112578 doi: 10.3390/math11112578
    [24] E. E. Ali, G. I. Oros, S. A. Shah, A. M. Albalahi, Applications of $ \mathfrak{q}$-calculus multiplier operators and subordination for the study of particular analytic function subclasses, Mathematics, 11 (2023), 2705. https://doi.org/10.3390/math11122705 doi: 10.3390/math11122705
    [25] W. Y. Kota, R. M. El-Ashwah, Some application of subordination theorems associated with fractional $\mathfrak{q}$-calculus operator, Math. Bohem., 148 (2023), 131–148. http://doi.org/10.21136/MB.2022.0047-21 doi: 10.21136/MB.2022.0047-21
    [26] B. Wang, R. Srivastava, J. L. Liu, A certain subclass of multivalent analytic functions defined by the $\mathfrak{q}$-difference operator related to the Janowski functions, Mathematics, 9 (2021), 1706. https://doi.org/10.3390/math9141706 doi: 10.3390/math9141706
    [27] S. Kanas, D. Raducanu, Some classes of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9
    [28] K. I. Noor, S. Riaz, M. A. Noor, On $\mathfrak{q}$-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3–11.
    [29] M. K. Aouf, S. M. Madian, Inclusion and properties neighbourhood for certain $p$-valent functions associated with complex order and $ \mathfrak{q}$-$p$-valent Cătaş operator, J. Taibah Univ. Sci., 14 (2020), 1226–1232. https://doi.org/10.1080/16583655.2020.1812923 doi: 10.1080/16583655.2020.1812923
    [30] M. Arif, H. M. Srivastava, S. Umar, Some applications of a $ \mathfrak{q}$-analogue of the Ruscheweyh type operator for multivalent functions, RACSAM, 113 (2019), 1211–1221. https://doi.org/10.1007/s13398-018-0539-3 doi: 10.1007/s13398-018-0539-3
    [31] R. M. Goel, N. S. Sohi, A new criterion for $p$-valent functions, P. Am. Math. Soc., 78 (1980), 353–357. https://doi.org/10.2307/2042324 doi: 10.2307/2042324
    [32] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109–115. https://doi.org/10.2307/2039801 doi: 10.2307/2039801
    [33] K. I. Noor, M. Arif, On some applications of Ruscheweyh derivative, Comput. Math. Appl., 62 (2011), 4726–4732. https://doi.org/10.1016/j.camwa.2011.10.063 doi: 10.1016/j.camwa.2011.10.063
    [34] I. Aldawish, M. Darus, Starlikeness of $q$-differential operator involving quantum calculus, Korean J. Math., 22 (2014), 699–709. https://doi.org/10.11568/kjm.2014.22.4.699 doi: 10.11568/kjm.2014.22.4.699
    [35] H. Aldweby, M. Darus, A subclass of harmonic univalent functions associated with $\mathfrak{q}$-analogue of Dziok-Srivastava operator, ISRN Mathematical Analysis, 2013 (2013), 382312. https://doi.org/10.1155/2013/382312 doi: 10.1155/2013/382312
    [36] M. K. Aouf, R. M. El-Ashwah, Inclusion properties of certain subclass of analytic functions defined by multiplier transformations, Annales Universitatis Mariae Curie-Sklodowska Sectio A–Mathematica, 63 (2009), 29–38. https://doi.org/10.2478/v10062-009-0003-0 doi: 10.2478/v10062-009-0003-0
    [37] R. M. El-Ashwah, M. K. Aouf, Some properties of new integral operator, Acta Universitatis Apulensis, 24 (2010), 51–61.
    [38] T. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operator, J. Math. Anal. Appl., 176 (1993), 138–147. https://doi.org/10.1006/jmaa.1993.1204 doi: 10.1006/jmaa.1993.1204
    [39] G. S. Sălăgean, Subclasses of univalent functions, In: Complex analysis—Fifth Romanian-Finnish seminar, Berlin: Springer, 1983,362–372. https://doi.org/10.1007/BFb0066543
    [40] S. A. Shah, K. I. Noor, Study on $\mathfrak{q}$-analogue of certain family of linear operators, Turk. J. Math., 43 (2019), 2707–2714. https://doi.org/10.3906/mat-1907-41 doi: 10.3906/mat-1907-41
    [41] H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integr. Transf. Spec. F., 18 (2007), 207–216. https://doi.org/10.1080/10652460701208577 doi: 10.1080/10652460701208577
    [42] H. M. Srivastava, J. Choi, Series associated with the Zeta and related functions, Dordrecht: Springer, 2001.
    [43] S. G. Gal, A. I. Ban, Elemente de matematică fuzzy, Romania: Editura Universităţii din Oradea, 1996.
    [44] S. S. Miller, P. T. Mocanu, Differential subordinations theory and applications, Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9781482289817
    [45] S. A. Shah, E. E. Ali, A. A. Maitlo, T. Abdeljawad, A. M. Albalahi, Inclusion results for the class of fuzzy $\alpha $-convex functions, AIMS Mathematics, 8 (2023), 1375–1383. https://doi.org/10.3934/math.2023069 doi: 10.3934/math.2023069
    [46] B. Kanwal, S. Hussain, A. Saliu, Fuzzy differential subordination related to strongly Janowski functions, Appl. Math. Sci. Eng., 31 (2023), 2170371. https://doi.org/10.1080/27690911.2023.2170371 doi: 10.1080/27690911.2023.2170371
    [47] S. A. Shah, E. E. Ali, A. Catas, A. M. Albalahi, On fuzzy differential subordination associated with $q$-difference operator, AIMS Mathematics, 8 (2023), 6642–6650. https://doi.org/10.3934/math.2023336 doi: 10.3934/math.2023336
    [48] B. Kanwal, K. Sarfaraz, M. Naz, A. Saliu, Fuzzy differential subordination associated with generalized Mittag-Leffler type Poisson distribution, Arab Journal of Basic and Applied Sciences, 31 (2024), 206–212. https://doi.org/10.1080/25765299.2024.2319366 doi: 10.1080/25765299.2024.2319366
    [49] S. H. Hadi, M. Darus, A class of harmonic $(p, \mathfrak{q})$-starlike functions involving a generalized $(p, \mathfrak{q})$-Bernardi integral operator, Probl. Anal. Issues Anal., 12 (2023), 17–36. https://doi.org/10.15393/j3.art.2023.12850 doi: 10.15393/j3.art.2023.12850
    [50] P. H. Long, H. Tang, W. S. Wang, Functional inequalities for several classes of $\mathfrak{q}$-starlike and $\mathfrak{q}$-convex type analytic and multivalent functions using a generalized Bernardi integral operator, AIMS Mathematics, 6 (2021), 1191–1208. https://doi.org/10.3934/math.2021073 doi: 10.3934/math.2021073
    [51] O. A. Arqub, J. Singh, M. Alhodaly, Adaptation of kernel functions-based approach with Atangana-Baleanu-Caputo distributed order derivative for solutions of fuzzy fractional Volterra and Fredholm integrodifferential equations, Math. Method. Appl. Sci., 46 (2023), 7807–7834. https://doi.org/10.1002/mma.7228 doi: 10.1002/mma.7228
    [52] O. A. Arqub, J. Singh, B. Maayah, M. Alhodaly, Reproducing kernel approach for numerical solutions of fuzzy fractional initial value problems under the Mittag-Leffler kernel differential operator, Math. Method. Appl. Sci., 46 (2023), 7965–7986. https://doi.org/10.1002/mma.7305 doi: 10.1002/mma.7305
    [53] O. A. Arqub, Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations, Neural Comput. & Applic., 28 (2017), 1591–1610. https://doi.org/10.1007/s00521-015-2110-x doi: 10.1007/s00521-015-2110-x
    [54] O. A. Arqub, S. Momani, S. Al-Mezel, M. Kutbi, Existence, Uniqueness, and characterization theorems for nonlinear fuzzy integrodifferential equations of Volterra type, Math. Probl. Eng., 2015 (2015), 835891. http://doi.org/10.1155/2015/835891 doi: 10.1155/2015/835891
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(554) PDF downloads(45) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog