Citation: Ekram E. Ali, Georgia Irina Oros, Rabha M. El-Ashwah, Abeer M. Albalahi. Applications of fuzzy differential subordination theory on analytic $ p $ -valent functions connected with $ \mathfrak{q} $-calculus operator[J]. AIMS Mathematics, 2024, 9(8): 21239-21254. doi: 10.3934/math.20241031
[1] | L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[2] | G. I. Oros, G. Oros, The notion of subordination in fuzzy sets theory, General Mathematics, 19 (2011), 97–103. |
[3] | S. S. Miller, P. T. Mocanu, Second order-differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289–305. https://doi.org/10.1016/0022-247X(78)90181-6 doi: 10.1016/0022-247X(78)90181-6 |
[4] | S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157–172. https://doi.org/10.1307/mmj/1029002507 doi: 10.1307/mmj/1029002507 |
[5] | G. I. Oros, G. Oros, Fuzzy differential subordination, Acta Universitatis Apulensis, 30 (2012), 55–64. |
[6] | I. Dzitac, F. G. Filip, M. J. Manolescu, Fuzzy logic is not fuzzy: world-renowned computer scientist Lotfi A. Zadeh, Int. J. Comput. Commun., 12 (2017), 748–789. https://doi.org/10.15837/ijccc.2017.6.3111 doi: 10.15837/ijccc.2017.6.3111 |
[7] | G. I. Oros, G. Oros, Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babes-Bolyai Math., 57 (2012), 239–248. |
[8] | E. E. Ali, M. Vivas-Cortez, R. M. El-Ashwah, New results about fuzzy $\gamma $-convex functions connected with the $\mathfrak{q}$-analogue multiplier-Noor integral operator, AIMS Mathematics, 9 (2024), 5451–5465. https://doi.org/10.3934/math.2024263 doi: 10.3934/math.2024263 |
[9] | E. E. Ali, M. Vivas-Cortez, R. M. El-Ashwah, A. M. Albalahi, Fuzzy subordination results for meromorphic functions connected with a linear operator, Fractal Fract., 8 (2024), 308. https://doi.org/10.3390/fractalfract8060308 doi: 10.3390/fractalfract8060308 |
[10] | G. I. Oros, Briot-Bouquet fuzzy differential subordination, Analele Universitatii Oradea Fasc. Matematica, 2 (2012), 83–97. |
[11] | F. H. Jackson, On $\mathfrak{q}$-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751 |
[12] | F. H. Jackson, On $\mathfrak{q}$-definite integrals, The Quarterly Journal of Pure and Applied Mathematics, 41 (1910), 193–203. |
[13] | R. D. Carmichael, The general theory of linear $\mathfrak{q}$-difference equations, Am. J. Math., 34 (1912), 147–168. |
[14] | T. E. Mason, On properties of the solution of linear $\mathfrak{q }$-difference equations with entire function coefficients, Am. J. Math., 37 (1915), 439–444. https://doi.org/10.2307/2370216 doi: 10.2307/2370216 |
[15] | W. J. Trjitzinsky, Analytic theory of linear difference equations, Acta Math., 61 (1933), 1–38. https://doi.org/10.1007/BF02547785 doi: 10.1007/BF02547785 |
[16] | M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables, Theory and Application, 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407 |
[17] | H. M. Srivastava, Operators of basic (or $\mathfrak{q}$-) calculus and fractional $\mathfrak{q}$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0 |
[18] | H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex A., 22 (2021), 1501–1520. |
[19] | H. M. Srivastava, An introductory overview of Bessel polynomials, the generalized Bessel polynomials and the $\mathfrak{q}$-Bessel polynomials, Symmetry, 15 (2023), 822. https://doi.org/10.3390/sym15040822 doi: 10.3390/sym15040822 |
[20] | E. E. Ali, T. Bulboaca, Subclasses of multivalent analytic functions associated with a $\mathfrak{q}$-difference operator, Mathematics, 8 (2020), 2184. https://doi.org/10.3390/math8122184 doi: 10.3390/math8122184 |
[21] | E. E. Ali, A. M. Lashin, A. M. Albalahi, Coefficient estimates for some classes of biunivalent function associated with Jackson $\mathfrak{q}$-difference operator, J. Funct. Space., 2022 (2022), 2365918. https://doi.org/10.1155/2022/2365918 doi: 10.1155/2022/2365918 |
[22] | E. E. Ali, H. M. Srivastava, A. M. Y. Lashin, A. M. Albalahi, Applications of some subclasses of meromorphic functions associated with the $\mathfrak{q}$-derivatives of the $\mathfrak{q}$-binomials, Mathematics, 11 (2023), 2496. https://doi.org/10.1155/2022/2365918 doi: 10.1155/2022/2365918 |
[23] | E. E. Ali, H. M. Srivastava, A. M. Albalahi, Subclasses of $p$-valent $k$-uniformly convex and starlike functions defined by the $\mathfrak{ q}$-derivative operator, Mathematics, 11 (2023), 2578. https://doi.org/10.3390/math11112578 doi: 10.3390/math11112578 |
[24] | E. E. Ali, G. I. Oros, S. A. Shah, A. M. Albalahi, Applications of $ \mathfrak{q}$-calculus multiplier operators and subordination for the study of particular analytic function subclasses, Mathematics, 11 (2023), 2705. https://doi.org/10.3390/math11122705 doi: 10.3390/math11122705 |
[25] | W. Y. Kota, R. M. El-Ashwah, Some application of subordination theorems associated with fractional $\mathfrak{q}$-calculus operator, Math. Bohem., 148 (2023), 131–148. http://doi.org/10.21136/MB.2022.0047-21 doi: 10.21136/MB.2022.0047-21 |
[26] | B. Wang, R. Srivastava, J. L. Liu, A certain subclass of multivalent analytic functions defined by the $\mathfrak{q}$-difference operator related to the Janowski functions, Mathematics, 9 (2021), 1706. https://doi.org/10.3390/math9141706 doi: 10.3390/math9141706 |
[27] | S. Kanas, D. Raducanu, Some classes of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9 |
[28] | K. I. Noor, S. Riaz, M. A. Noor, On $\mathfrak{q}$-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3–11. |
[29] | M. K. Aouf, S. M. Madian, Inclusion and properties neighbourhood for certain $p$-valent functions associated with complex order and $ \mathfrak{q}$-$p$-valent Cătaş operator, J. Taibah Univ. Sci., 14 (2020), 1226–1232. https://doi.org/10.1080/16583655.2020.1812923 doi: 10.1080/16583655.2020.1812923 |
[30] | M. Arif, H. M. Srivastava, S. Umar, Some applications of a $ \mathfrak{q}$-analogue of the Ruscheweyh type operator for multivalent functions, RACSAM, 113 (2019), 1211–1221. https://doi.org/10.1007/s13398-018-0539-3 doi: 10.1007/s13398-018-0539-3 |
[31] | R. M. Goel, N. S. Sohi, A new criterion for $p$-valent functions, P. Am. Math. Soc., 78 (1980), 353–357. https://doi.org/10.2307/2042324 doi: 10.2307/2042324 |
[32] | S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109–115. https://doi.org/10.2307/2039801 doi: 10.2307/2039801 |
[33] | K. I. Noor, M. Arif, On some applications of Ruscheweyh derivative, Comput. Math. Appl., 62 (2011), 4726–4732. https://doi.org/10.1016/j.camwa.2011.10.063 doi: 10.1016/j.camwa.2011.10.063 |
[34] | I. Aldawish, M. Darus, Starlikeness of $q$-differential operator involving quantum calculus, Korean J. Math., 22 (2014), 699–709. https://doi.org/10.11568/kjm.2014.22.4.699 doi: 10.11568/kjm.2014.22.4.699 |
[35] | H. Aldweby, M. Darus, A subclass of harmonic univalent functions associated with $\mathfrak{q}$-analogue of Dziok-Srivastava operator, ISRN Mathematical Analysis, 2013 (2013), 382312. https://doi.org/10.1155/2013/382312 doi: 10.1155/2013/382312 |
[36] | M. K. Aouf, R. M. El-Ashwah, Inclusion properties of certain subclass of analytic functions defined by multiplier transformations, Annales Universitatis Mariae Curie-Sklodowska Sectio A–Mathematica, 63 (2009), 29–38. https://doi.org/10.2478/v10062-009-0003-0 doi: 10.2478/v10062-009-0003-0 |
[37] | R. M. El-Ashwah, M. K. Aouf, Some properties of new integral operator, Acta Universitatis Apulensis, 24 (2010), 51–61. |
[38] | T. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operator, J. Math. Anal. Appl., 176 (1993), 138–147. https://doi.org/10.1006/jmaa.1993.1204 doi: 10.1006/jmaa.1993.1204 |
[39] | G. S. Sălăgean, Subclasses of univalent functions, In: Complex analysis—Fifth Romanian-Finnish seminar, Berlin: Springer, 1983,362–372. https://doi.org/10.1007/BFb0066543 |
[40] | S. A. Shah, K. I. Noor, Study on $\mathfrak{q}$-analogue of certain family of linear operators, Turk. J. Math., 43 (2019), 2707–2714. https://doi.org/10.3906/mat-1907-41 doi: 10.3906/mat-1907-41 |
[41] | H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integr. Transf. Spec. F., 18 (2007), 207–216. https://doi.org/10.1080/10652460701208577 doi: 10.1080/10652460701208577 |
[42] | H. M. Srivastava, J. Choi, Series associated with the Zeta and related functions, Dordrecht: Springer, 2001. |
[43] | S. G. Gal, A. I. Ban, Elemente de matematică fuzzy, Romania: Editura Universităţii din Oradea, 1996. |
[44] | S. S. Miller, P. T. Mocanu, Differential subordinations theory and applications, Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9781482289817 |
[45] | S. A. Shah, E. E. Ali, A. A. Maitlo, T. Abdeljawad, A. M. Albalahi, Inclusion results for the class of fuzzy $\alpha $-convex functions, AIMS Mathematics, 8 (2023), 1375–1383. https://doi.org/10.3934/math.2023069 doi: 10.3934/math.2023069 |
[46] | B. Kanwal, S. Hussain, A. Saliu, Fuzzy differential subordination related to strongly Janowski functions, Appl. Math. Sci. Eng., 31 (2023), 2170371. https://doi.org/10.1080/27690911.2023.2170371 doi: 10.1080/27690911.2023.2170371 |
[47] | S. A. Shah, E. E. Ali, A. Catas, A. M. Albalahi, On fuzzy differential subordination associated with $q$-difference operator, AIMS Mathematics, 8 (2023), 6642–6650. https://doi.org/10.3934/math.2023336 doi: 10.3934/math.2023336 |
[48] | B. Kanwal, K. Sarfaraz, M. Naz, A. Saliu, Fuzzy differential subordination associated with generalized Mittag-Leffler type Poisson distribution, Arab Journal of Basic and Applied Sciences, 31 (2024), 206–212. https://doi.org/10.1080/25765299.2024.2319366 doi: 10.1080/25765299.2024.2319366 |
[49] | S. H. Hadi, M. Darus, A class of harmonic $(p, \mathfrak{q})$-starlike functions involving a generalized $(p, \mathfrak{q})$-Bernardi integral operator, Probl. Anal. Issues Anal., 12 (2023), 17–36. https://doi.org/10.15393/j3.art.2023.12850 doi: 10.15393/j3.art.2023.12850 |
[50] | P. H. Long, H. Tang, W. S. Wang, Functional inequalities for several classes of $\mathfrak{q}$-starlike and $\mathfrak{q}$-convex type analytic and multivalent functions using a generalized Bernardi integral operator, AIMS Mathematics, 6 (2021), 1191–1208. https://doi.org/10.3934/math.2021073 doi: 10.3934/math.2021073 |
[51] | O. A. Arqub, J. Singh, M. Alhodaly, Adaptation of kernel functions-based approach with Atangana-Baleanu-Caputo distributed order derivative for solutions of fuzzy fractional Volterra and Fredholm integrodifferential equations, Math. Method. Appl. Sci., 46 (2023), 7807–7834. https://doi.org/10.1002/mma.7228 doi: 10.1002/mma.7228 |
[52] | O. A. Arqub, J. Singh, B. Maayah, M. Alhodaly, Reproducing kernel approach for numerical solutions of fuzzy fractional initial value problems under the Mittag-Leffler kernel differential operator, Math. Method. Appl. Sci., 46 (2023), 7965–7986. https://doi.org/10.1002/mma.7305 doi: 10.1002/mma.7305 |
[53] | O. A. Arqub, Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations, Neural Comput. & Applic., 28 (2017), 1591–1610. https://doi.org/10.1007/s00521-015-2110-x doi: 10.1007/s00521-015-2110-x |
[54] | O. A. Arqub, S. Momani, S. Al-Mezel, M. Kutbi, Existence, Uniqueness, and characterization theorems for nonlinear fuzzy integrodifferential equations of Volterra type, Math. Probl. Eng., 2015 (2015), 835891. http://doi.org/10.1155/2015/835891 doi: 10.1155/2015/835891 |