The main objective of this study is to propose a new notion of a complex intuitionistic $ Q $-fuzzy subfield of a field $ F $ that is developed from the concept of a complex fuzzy subfield of a field $ F $ by adding the notion of intuitionistic $ Q $-fuzzy into a complex fuzzy subfield. We establish a new structure of complex fuzzy subfields which is called complex intuitionistic $ Q $-fuzzy subfield. The most significant advantage of this addition appears to be that it broadens the scope of the investigation from membership function values to membership and non-membership function values. The range of complex fuzzy subfields is expanded to the unit disc in the complex plane for both membership and non-membership functions. Some fundamental operations, especially the intersection, union, and complement of complex intuitionistic $ Q $-fuzzy subfields are studied. We define the necessity and possibility operators on a complex intuitionistic $ Q $-fuzzy subfield. Moreover, we show that each complex intuitionistic $ Q $-fuzzy subfield generates two intuitionistic $ Q $-fuzzy subfields. Subsequently, several related theorems are proven.
Citation: Adela Khamis, Abd Ghafur Ahmad. On fundamental algebraic characterizations of complex intuitionistic Q-fuzzy subfield[J]. AIMS Mathematics, 2023, 8(3): 7032-7060. doi: 10.3934/math.2023355
The main objective of this study is to propose a new notion of a complex intuitionistic $ Q $-fuzzy subfield of a field $ F $ that is developed from the concept of a complex fuzzy subfield of a field $ F $ by adding the notion of intuitionistic $ Q $-fuzzy into a complex fuzzy subfield. We establish a new structure of complex fuzzy subfields which is called complex intuitionistic $ Q $-fuzzy subfield. The most significant advantage of this addition appears to be that it broadens the scope of the investigation from membership function values to membership and non-membership function values. The range of complex fuzzy subfields is expanded to the unit disc in the complex plane for both membership and non-membership functions. Some fundamental operations, especially the intersection, union, and complement of complex intuitionistic $ Q $-fuzzy subfields are studied. We define the necessity and possibility operators on a complex intuitionistic $ Q $-fuzzy subfield. Moreover, we show that each complex intuitionistic $ Q $-fuzzy subfield generates two intuitionistic $ Q $-fuzzy subfields. Subsequently, several related theorems are proven.
[1] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[2] | J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145–174. https://doi.org/10.1016/0022-247X(67)90189-8 doi: 10.1016/0022-247X(67)90189-8 |
[3] | A. De Luca, S. Termini, Algebraic properties of fuzzy sets, J. Math. Anal. Appl., 40 (1972), 373–386. https://doi.org/10.1016/0022-247X(72)90057-1 doi: 10.1016/0022-247X(72)90057-1 |
[4] | A. Al-Masarwah, A. G. Ahmad, Subalgebras of type (α, β) based on m-polar fuzzy points in BCK/BCI-Algebras, AIMS Math., 5 (2020), 1035–1049. https://doi.org/10.3934/math.2020072 doi: 10.3934/math.2020072 |
[5] | F. Al-Sharqi, A. Al-Quran, A. G. Ahmad, S. Broumi, Interval-valued complex neutrosophic soft set and its applications in decision-making, Neutrosophic Sets Syst., 40 (2021), 149–168. |
[6] | A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517. https://doi.org/10.1016/0022-247X(71)90199-5 doi: 10.1016/0022-247X(71)90199-5 |
[7] | I. Masmali, U. Shuaib, A. Razaq, A. Fatima, G. Alhamzi, On fundamental algebraic characterizations of μ-fuzzy normal subgroups, J. Funct. Space., 2022 (2022), 1–10. https://doi.org/10.1155/2022/2703489 doi: 10.1155/2022/2703489 |
[8] | S. Bhunia, G. Ghorai, A new approach to fuzzy group theory using (α, β)-Pythagorean fuzzy sets, Songklanakarin J. Sci. Technol., 43 (2021), 295–306. |
[9] | S. Bhunia, G. Ghorai, M. A. Kutbi, M. Gulzar, M. A. Alam, On the algebraic characteristics of fuzzy sub e-groups, J. Funct. Space., 2021 (2021), 1–7. https://doi.org/10.1155/2021/5253346 doi: 10.1155/2021/5253346 |
[10] | A. Solairaju, R. Nagarajan, A new structure and construction of Q-fuzzy groups, Adv. Fuzzy Math., 4 (2009), 23–29. |
[11] | P. M. S. Selvam, T. Priya, K. T. Nagalakshmi, T. Ramachandran, On some properties of anti-Q-fuzzy normal subgroups, Gen. Math. Notes, 22 (2014), 1–10. |
[12] | R. Rasuli, Anti Q-fuzzy subgroups under t-conorms, Earthline J. Math. Sci., 4 (2020), 13–28. https://doi.org/10.34198/ejms.4120.1328 doi: 10.34198/ejms.4120.1328 |
[13] | R. Rasuli, Characterization of Q-fuzzy subrings (anti Q-fuzzy subrings) with respect to a t-norm (t-conorm), J. Inf. Optim. Sci., 39 (2018), 827–837. https://doi.org/10.1080/02522667.2016.1228316 doi: 10.1080/02522667.2016.1228316 |
[14] | A. Emniyet, M. Şahin, Fuzzy normed rings, Symmetry-Basel, 10 (2018), 515. https://doi.org/10.3390/sym10100515 doi: 10.3390/sym10100515 |
[15] | M. Al Tahan, S. Hoskova-Mayerova, B. Davvaz, Some results on (generalized) fuzzy multi-Hν-ideals of Hν-rings, Symmetry-Basel, 11 (2019), 1–14. https://doi.org/10.3390/sym11111376 doi: 10.3390/sym11111376 |
[16] | A. Al-Masarwah, A. G. Ahmad, Structures on Doubt Neutrosophic Ideals of BCK/BCI-Algebras under (S, T)-Norms, Neutrosophic Sets Syst., 33 (2020), 275–289. https://doi.org/10.5281/zenodo.3783032 doi: 10.5281/zenodo.3783032 |
[17] | G. M. Addis, N. Kausar, M. Munir, Fuzzy homomorphism theorems on rings, J. Discret. Math. Sci. Cryptogr., 2020, 1–20. https://doi.org/10.1080/09720529.2020.1809777 doi: 10.1080/09720529.2020.1809777 |
[18] | N. Kausar, M. Munir, B. ul Islam, M. A. Alesemi, M. Gulzar, Fuzzy bi-ideals in LA-rings, Ital. J. Pure Appl. Math., 44 (2020), 745–763. |
[19] | A. Al-Masarwah, A. G. Ahmad, G. Muhiuddin, D. Al-Kadi, Generalized m-polar fuzzy positive implicative ideals of BCK-algebras, J. Math., 2021 (2021), 1–10. https://doi.org/10.1155/2021/6610009 doi: 10.1155/2021/6610009 |
[20] | H. Alolaiyan, M. H. Mateen, D. Pamucar, M. K. Mahmmod, F. Arslan, A certain structure of bipolar fuzzy subrings, Symmetry-Basel, 13 (2021), 1–21. https://doi.org/10.3390/sym13081397. doi: 10.3390/sym13081397 |
[21] | D. S. Malik, J. N. Mordeson, Fuzzy subfields, Fuzzy Set. Syst., 37 (1990), 383–388. https://doi.org/10.1016/0165-0114(90)90034-4 doi: 10.1016/0165-0114(90)90034-4 |
[22] | J. N. Mordeson, Fuzzy subfields of finite fields, Fuzzy Set. Syst., 52 (1992), 93–96. https://doi.org/10.1016/0165-0114(92)90041-2 doi: 10.1016/0165-0114(92)90041-2 |
[23] | Y. Feng, B. Yao, On (λ, μ)-anti-fuzzy subfields, J. Discret. Math. Sci. Cryptogr., 15 (2012), 49–55. https://doi.org/10.1080/09720529.2012.10698363 doi: 10.1080/09720529.2012.10698363 |
[24] | R. J. Hussain, A review on Q-fuzzy subgroups in algebra, Int. J. Appl. Eng. Res., 14 (2019), 60–63. |
[25] | M. S. Muthuraman, M. Sridharan, K. H. Manikandan, G. Sabarinathan, R. Muthuraj, Fuzzy HX field, Int. J. Mod. Agric., 10 (2021), 141–147 |
[26] | K. T. Atanassov, Intuitionistic fuzzy sets, Berlin, Germany: Springer, 1999, 1–137. https://doi.org/10.1007/978-3-7908-1870-3_1 |
[27] | K. T. Atanassov, Remarks on the intuitionistic fuzzy sets, Fuzzy Set. Syst., 51 (1992), 117–118. https://doi.org/10.1016/0165-0114(92)90083-G doi: 10.1016/0165-0114(92)90083-G |
[28] | E. Szmidt, J. Kacprzyk, Distances between intuitionistic fuzzy sets, Fuzzy Set. Syst., 114 (2000), 505–518. https://doi.org/10.1016/S0165-0114(98)00244-9 doi: 10.1016/S0165-0114(98)00244-9 |
[29] | G. Beliakov, H. Bustince, D. P. Goswami, U. K. Mukherjee, N. R. Pal, On averaging operators for Atanassov's intuitionistic fuzzy sets, Inf. Sci., 181 (2011), 1116–1124. https://doi.org/10.1016/j.ins.2010.11.024 doi: 10.1016/j.ins.2010.11.024 |
[30] | S. Broumi, Q-intuitionistic fuzzy soft sets, J. New Theory, 5 (2015), 80–91. |
[31] | K. T. Atanassov, Review and new results on intuitionistic fuzzy sets, Int. J. Bioautomation, 20 (2016), 17–26. |
[32] | K. Hur, H. W. Kang, H. K. Song, Intuitionistic fuzzy subgroups and subrings, Honam Math. J., 25 (2003), 19–41. |
[33] | S. Kousar, T. Saleem, N. Kausar, D. Pamucar, G. M. Addis, Homomorphisms of lattice-valued intuitionistic fuzzy subgroup type-3, Comput. Intell. Neurosci., 2022 (2022), 1–11. https://doi.org/10.1155/2022/6847138 doi: 10.1155/2022/6847138 |
[34] | B. Sailaja, V. B. V. N. Prasad, The interaction between a Q-fuzzy normal subgroup and a Q-fuzzy characteristic subgroup, J. Math. Comput. Sci., 11 (2021), 819–831. https://doi.org/10.28919/jmcs/5166 doi: 10.28919/jmcs/5166 |
[35] | M. Yamin, P. K. Sharma, Intuitionistic fuzzy rings with operators, Int. J. Math. Comput. Sci., 6 (2018), 1860–1866. https://doi.org/10.18535/ijmcr/v6i2.01 doi: 10.18535/ijmcr/v6i2.01 |
[36] | N. A. Alhaleem, A. G. Ahmad, Intuitionistic anti fuzzy normal subrings over normed rings, Sains Malays., 51 (2022), 609–618. http://dx.doi.org/10.17576/jsm-2022-5102-24 doi: 10.17576/jsm-2022-5102-24 |
[37] | N. A. Alhaleem, A. G. Ahmad, Intuitionistic fuzzy normal subrings over normed rings, Int. J. Anal. Appl., 19 (2021), 341–359. https://doi.org/10.28924/2291-8639-19-2021-341 doi: 10.28924/2291-8639-19-2021-341 |
[38] | N. A. Alhaleem, A. G. Ahmad, Intuitionistic fuzzy normed subrings and intuitionistic fuzzy normed ideals, Mathematics, 8 (2020), 1–9. https://doi.org/10.3390/math8091594 doi: 10.3390/math8091594 |
[39] | D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10 (2002), 171–186. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119 |
[40] | F. Al-Sharqi, A. G. Ahmad, A. Al-Quran, Interval complex neutrosophic soft relations and their application in decision-making, J. Intell. Fuzzy Syst., 43 (2022), 745–771. https://doi.org/10.3233/JIFS-212422 doi: 10.3233/JIFS-212422 |
[41] | X. Yang, T. Mahmood, U. Ur Rehman, Bipolar complex fuzzy subgroups, Mathematics, 10 (2022), 2882. https://doi.org/10.3390/math10162882 doi: 10.3390/math10162882 |
[42] | H. Alolaiyan, H. A. Alshehri, M. H. Mateen, D. Pamucar, M. Gulzar, A novel algebraic structure of (α, β)-complex fuzzy subgroups, Entropy, 23 (2021), 1–16. https://doi.org/10.3390/e23080992 doi: 10.3390/e23080992 |
[43] | M. O. Alsarahead, A. G. Ahmad, Complex fuzzy subrings, Int. J. Pure Appl. Math., 117 (2017), 563–577. https://doi.org/10.12732/ijpam.v117i4.1 doi: 10.12732/ijpam.v117i4.1 |
[44] | M. O. Alsarahead, A. G. Ahmad, Complex intuitionistic fuzzy subrings, Borneo Sci., 38 (2017), 24–37. |
[45] | M. Gulzar, D. Alghazzawi, M. Haris Mateen, M. Premkumar, On some characterization of Q-complex fuzzy sub-rings, J. Math. Comput. Sci., 22 (2021), 295–305. https://doi.org/10.22436/jmcs.022.03.08 doi: 10.22436/jmcs.022.03.08 |
[46] | M. Gulzar, F. Dilawar, D. Alghazzawi, M. H. Mateen, A note on complex fuzzy subfield, Indones. J. Electr. Eng. Comput. Sci., 21 (2021), 1048–1056. https://doi.org/10.11591/ijeecs.v21.i2.pp1048-1056 doi: 10.11591/ijeecs.v21.i2.pp1048-1056 |
[47] | R. Muthuraj, K. H. Manikandan, P. M. S. Selvam, Intuitionistic Q-fuzzy normal HX group, J. Phys. Sci., 15 (2011), 95–102. |
[48] | A. Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, Int. Conf. Fundam. Appl. Sci., 1482 (2012), 464–470. https://doi.org/10.1063/1.4757515 doi: 10.1063/1.4757515 |