Research article Special Issues

Existence results for a coupled system of $ (k, \varphi) $-Hilfer fractional differential equations with nonlocal integro-multi-point boundary conditions

  • Received: 30 August 2022 Revised: 04 November 2022 Accepted: 17 November 2022 Published: 01 December 2022
  • MSC : 34A08, 34B10

  • In this paper, we investigate the existence and uniqueness of solutions to a nonlinear coupled systems of $ (k, \varphi) $-Hilfer fractional differential equations supplemented with nonlocal integro-multi-point boundary conditions. We make use of the Banach contraction mapping principle to obtain the uniqueness result, while the existence results are proved with the aid of Krasnosel'ski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }} $'s fixed point theorem and Leray-Schauder alternative for the given problem. Examples demonstrating the application of the abstract results are also presented. Our results are of quite general nature and specialize in several new results for appropriate values of the parameters $ \beta_1, $ $ \beta_2, $ and the function $ \varphi $ involved in the problem at hand.

    Citation: Nattapong Kamsrisuk, Sotiris K. Ntouyas, Bashir Ahmad, Ayub Samadi, Jessada Tariboon. Existence results for a coupled system of $ (k, \varphi) $-Hilfer fractional differential equations with nonlocal integro-multi-point boundary conditions[J]. AIMS Mathematics, 2023, 8(2): 4079-4097. doi: 10.3934/math.2023203

    Related Papers:

  • In this paper, we investigate the existence and uniqueness of solutions to a nonlinear coupled systems of $ (k, \varphi) $-Hilfer fractional differential equations supplemented with nonlocal integro-multi-point boundary conditions. We make use of the Banach contraction mapping principle to obtain the uniqueness result, while the existence results are proved with the aid of Krasnosel'ski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }} $'s fixed point theorem and Leray-Schauder alternative for the given problem. Examples demonstrating the application of the abstract results are also presented. Our results are of quite general nature and specialize in several new results for appropriate values of the parameters $ \beta_1, $ $ \beta_2, $ and the function $ \varphi $ involved in the problem at hand.



    加载中


    [1] M. Faieghi, S. Kuntanapreeda, H. Delavari, D. Baleanu, LMI-based stabilization of a class of fractional-order chaotic systems, Nonlinear Dyn., 72 (2013), 301–309. https://doi.org/10.1007/s11071-012-0714-6 doi: 10.1007/s11071-012-0714-6
    [2] F. Zhang, G. Chen, C. Li, J. Kurths, Chaos synchronization in fractional differential systems, Philos. T. R. Soc. A, 371 (2013), 20120155. https://doi.org/10.1098/rsta.2012.0155 doi: 10.1098/rsta.2012.0155
    [3] Y. Xu, W. Li, Finite-time synchronization of fractional-order complex-valued coupled systems, Phys. A, 549 (2020), 123903. https://doi.org/10.1016/j.physa.2019.123903 doi: 10.1016/j.physa.2019.123903
    [4] M. S. Ali, G. Narayanan, V. Shekher, A. Alsaedi, B. Ahmad, Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays, Commun. Nonlinear Sci., 83 (2020), 105088. https://doi.org/10.1016/j.cnsns.2019.105088 doi: 10.1016/j.cnsns.2019.105088
    [5] Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE T. Contr. Syst. T., 20 (2012), 763–769. https://doi.org/10.1109/tcst.2011.2153203 doi: 10.1109/tcst.2011.2153203
    [6] R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/s0370-1573(00)00070-3 doi: 10.1016/s0370-1573(00)00070-3
    [7] M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecol. Model., 318 (2015), 8–18. https://doi.org/10.1016/j.ecolmodel.2015.06.016 doi: 10.1016/j.ecolmodel.2015.06.016
    [8] A. Carvalho, C. M. A. Pinto, A delay fractional order model for the co-infection of malaria and HIV/AIDS, Int. J. Dyn. Control, 5 (2017), 168–186. https://doi.org/10.1007/s40435-016-0224-3 doi: 10.1007/s40435-016-0224-3
    [9] J. Henderson, R. Luca, A. Tudorache, On a system of fractional differential equations with coupled integral boundary conditions, Fract. Calc. Appl. Anal., 18 (2015), 361–386. https://doi.org/10.1515/fca-2015-0024 doi: 10.1515/fca-2015-0024
    [10] J. R. Wang, Y. Zhang, Analysis of fractional order differential coupled systems, Math. Method. Appl. Sci., 38 (2015), 3322–3338. https://doi.org/10.1002/mma.3298 doi: 10.1002/mma.3298
    [11] L. Zhang, B. Ahmad, G. Wang, Monotone iterative method for a class of nonlinear fractional differential equations on unbounded domains in Banach spaces, Filomat, 31 (2017), 1331–1338. https://doi.org/10.2298/fil1705331z doi: 10.2298/fil1705331z
    [12] B. Ahmad, A. Alsaedi, S. Aljoudi, S. K. Ntouyas, On a coupled system of sequential fractional differential equations with variable coeffcients and coupled integral boundary conditions, Bull. Math. Soc. Sci. Math. Roumanie, 60 (2017), 3–18.
    [13] M. S. Abdo, K. Shah, S. K. Panchal, H. A. Wahash, Existence and Ulam stability results of a coupled system for terminal value problems involving $\psi$-Hilfer fractional operator, Adv. Differ. Equ., 2020 (2020), 316. https://doi.org/10.1186/s13662-020-02775-x doi: 10.1186/s13662-020-02775-x
    [14] A. M. Saeed, M. S. Abdo, M. B. Jeelani, Existence and Ulam-Hyers stability of a fractional-order coupled system in the frame of generalized Hilfer derivatives, Mathematics, 9 (2021), 2543. https://doi.org/10.3390/math9202543 doi: 10.3390/math9202543
    [15] B. Ahmad, R. Luca, Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions, Chaos Soliton. Fract., 104 (2017), 378–388. https://doi.org/10.1016/j.chaos.2017.08.035 doi: 10.1016/j.chaos.2017.08.035
    [16] R. S. Adigüzel, U. Aksoy, E. Karapinar, I. M. Erhan, On the solutions of fractional differential equations via geraghty type hybrid contractions, Appl. Comput. Math., 20 (2021), 313–333.
    [17] A. Salim, M. Benchohra, E. Karapinar, J. E. Lazreg, Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations, Adv. Differ. Equ., 2020 (2020), 601. https://doi.org/10.1186/s13662-020-03063-4 doi: 10.1186/s13662-020-03063-4
    [18] R. S. Adigüzel, U. Aksoy, E. Karapinar, I. M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Method. Appl. Sci., 2020. https://doi.org/10.1002/mma.6652
    [19] K. Diethelm, The analysis of fractional differential equations, Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [20] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Preface, North-Holland Math. Stud., 204 (2006), vii-x. https://doi.org/10.1016/s0304-0208(06)80001-0
    [21] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009.
    [22] K. S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, New York: John Wiley, 1993.
    [23] I. Podlubny, Fractional differential equations, New York: Academic Press, 1999.
    [24] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Yverdon: Gordon and Breach Science, 1993.
    [25] B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Switzerland: Springer, 2017. https://doi.org/10.1007/978-3-319-52141-1
    [26] B. Ahmad, S. K. Ntouyas, Nonlocal nonlinear fractional-order boundary value problems, Singapore: World Scientific, 2021. https://doi.org/10.1142/12102
    [27] Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014. https://doi.org/10.1142/9069
    [28] K. D. Kucche, A. D. Mali, On the nonlinear $(k, \varphi)$-Hilfer fractional differential equations, Chaos Soliton. Fract., 152 (2021), 111335. https://doi.org/10.1016/j.chaos.2021.111335 doi: 10.1016/j.chaos.2021.111335
    [29] S. K. Ntouyas, B. Ahmad, J. Tariboon, M. S. Alhodaly, Nonlocal integro-multi-point $(k, \psi)$-Hilfer type fractional boundary value problems, Mathematics, 10 (2022), 2357. https://doi.org/10.3390/math10132357 doi: 10.3390/math10132357
    [30] A. Samadi, S. K. Ntouyas, J. Tariboon, Nonlocal coupled system for $(k, \varphi)$-Hilfer fractional differential equations, Fractal Fract., 6 (2022), 234. https://doi.org/10.3390/fractalfract6050234 doi: 10.3390/fractalfract6050234
    [31] T. Li, A class of nonlocal boundary value problems for partial differential equations and its applications in numerical analysis, J. Comput. Appl. Math., 28 (1989), 49–62. https://doi.org/10.1016/0377-0427(89)90320-8 doi: 10.1016/0377-0427(89)90320-8
    [32] B. Ahmad, J. J. Nieto, Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations, Abstr. Appl. Anal., 2009 (2009), 494720. https://doi.org/10.1155/2009/494720 doi: 10.1155/2009/494720
    [33] A. Alsaedi, B. Ahmad, S. Aljoudi, S. K. Ntouyas, A study of a fully coupled two-parameter system of sequential fractional integro-differential equations with nonlocal integro-multipoint boundary conditions, Acta Math. Sci., 39 (2019), 927–944. https://doi.org/10.1007/s10473-019-0402-4 doi: 10.1007/s10473-019-0402-4
    [34] R. S. Adigüzel, U. Aksoy, E. Karapinar, I. M. Erhan, Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, RACSAM, 115 (2021), 155. https://doi.org/10.1007/s13398-021-01095-3 doi: 10.1007/s13398-021-01095-3
    [35] Y. Alruwaily, B. Ahmad, S. K. Ntouyas, A. S. M. Alzaidi, Existence results for coupled nonlinear sequential fractional differential equations with coupled Riemann–Stieltjes integro-multipoint boundary conditions, Fractal Fract., 6 (2022), 123. https://doi.org/10.3390/fractalfract6020123 doi: 10.3390/fractalfract6020123
    [36] J. Tariboon, A. Samadi, S. K. Ntouyas, Multi-point boundary value problems for $(k, \psi)$-Hilfer fractional differential equations and inclusions, Axioms, 11 (2022), 110. https://doi.org/10.3390/axioms11030110 doi: 10.3390/axioms11030110
    [37] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville $k$-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. https://doi.org/10.1109/access.2018.2878266 doi: 10.1109/access.2018.2878266
    [38] K. Deimling, Nonlinear functional analysis, New York: Springer, 1985. https://doi.org/10.1007/978-3-662-00547-7
    [39] A. Granas, J. Dugundji, Fixed point theory, New York: Springer-Verlag, 2005. https://doi.org/10.1007/978-0-387-21593-8
    [40] M. A. Krasnoselski, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, 10 (1955), 123–127.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1305) PDF downloads(135) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog