Research article Special Issues

The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space

  • Received: 03 September 2022 Revised: 10 October 2022 Accepted: 21 October 2022 Published: 31 October 2022
  • MSC : 53A04, 53A05, 58K05

  • In this study, the ruled developable surfaces with pointwise 1-type Gauss map of Frenet-type framed base (Ftfb) curve are introduced in Euclidean 3-space. The tangent developable surfaces, focal developable surfaces, and rectifying developable surfaces with singular points are considered. Then the conditions for the Gauss map of these surfaces to be pointwise 1-type are obtained separately. In order to form a basis for the study, first, the basic concepts related to the Ftfb curve and the Gauss map of a surface are recalled. Later, the necessary and sufficient conditions are found for these surfaces to be of the pointwise 1-type of the Gauss map. Finally, examples for each type of these surfaces are given, and their graphics are illustrated.

    Citation: Yanlin Li, Kemal Eren, Kebire Hilal Ayvacı, Soley Ersoy. The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space[J]. AIMS Mathematics, 2023, 8(1): 2226-2239. doi: 10.3934/math.2023115

    Related Papers:

  • In this study, the ruled developable surfaces with pointwise 1-type Gauss map of Frenet-type framed base (Ftfb) curve are introduced in Euclidean 3-space. The tangent developable surfaces, focal developable surfaces, and rectifying developable surfaces with singular points are considered. Then the conditions for the Gauss map of these surfaces to be pointwise 1-type are obtained separately. In order to form a basis for the study, first, the basic concepts related to the Ftfb curve and the Gauss map of a surface are recalled. Later, the necessary and sufficient conditions are found for these surfaces to be of the pointwise 1-type of the Gauss map. Finally, examples for each type of these surfaces are given, and their graphics are illustrated.



    加载中


    [1] P. Do Carmo, Differential geometry of curves and surfaces: revised and updated second edition, New Jersey: Prentice Hall, 1976.
    [2] B. Chen, Total mean curvature and submanifolds of finite type, Hackensack: World Scientific, 1984. http://dx.doi.org/10.1142/9237
    [3] B. Chen, S. Ishikawa, On classification of some surfaces of revolution of finite type, Tsukuba J. Math., 17 (1993), 287–298. http://dx.doi.org/10.21099/tkbjm/1496162145 doi: 10.21099/tkbjm/1496162145
    [4] B. Chen, P. Piccinni, Submanifolds with finite type Gauss map, B. Aust. Math. Soc., 35 (1987), 161–186. http://dx.doi.org/10.1017/S0004972700013162 doi: 10.1017/S0004972700013162
    [5] C. Baikoussis, D. Blair, On the Gauss map of ruled surfaces, Glasgow Math. J., 34 (1992), 355–359. http://dx.doi.org/10.1017/S0017089500008946 doi: 10.1017/S0017089500008946
    [6] C. Baikoussis, B. Chen, L. Verstraelen, Ruled surfaces and tubes with finite type Gauss map, Tokyo J. Math., 16 (1993), 341–349. http://dx.doi.org/10.3836/tjm/1270128488 doi: 10.3836/tjm/1270128488
    [7] Y. Kim, D. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys., 34 (2000), 191–205. http://dx.doi.org/10.1016/S0393-0440(99)00063-7 doi: 10.1016/S0393-0440(99)00063-7
    [8] U. Dursun, Flat surfaces in the Euclidean space with pointwise 1-type Gauss map, Bull. Malays. Math. Sci. Soc., 33 (2010), 469–478.
    [9] M. Soliman, H. Abd-Ellah, S. Hassan, S. Saleh, Darboux ruled surfaces with pointwise 1-type Gauss map, Sohag Journal of Sciences, 2 (2017), 1–8.
    [10] S. Honda, M. Takahashi, Framed curves in the Euclidean space, Adv. Geom., 16 (2016), 265–276. http://dx.doi.org/10.1515/advgeom-2015-0035 doi: 10.1515/advgeom-2015-0035
    [11] D. Kim, Surfaces with pointwise 1-type Gauss map, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 18 (2011), 369–377.
    [12] J. Bruce, P. Giblin, Curves and singularities: a geometrical introduction to singularity theory, 2 Eds, Cambridge: Cambridge University Press, 1992.
    [13] T. Fukunaga, M. Takahashi, Existence and uniqueness for Legendre curves, J. Geom., 104 (2013), 297–307. http://dx.doi.org/10.1007/s00022-013-0162-6 doi: 10.1007/s00022-013-0162-6
    [14] S. Honda, Flat surfaces associated with framed base curves, Ph. D Thesis, Hokkaido University, 2018.
    [15] T. Fukunaga, M. Takahashi, Framed surfaces in the Euclidean space, Bull. Braz. Math. Soc., New Series, 50 (2019), 37–65. http://dx.doi.org/10.1007/s00574-018-0090-z doi: 10.1007/s00574-018-0090-z
    [16] T. Fukunaga, M. Takahashi, Framed surfaces and one-parameter families of framed curves in Euclidean 3-space, J. Singul., 21 (2020), 30–49. http://dx.doi.org/10.5427/jsing.2020.21c doi: 10.5427/jsing.2020.21c
    [17] S. Honda, M. Takahashi, Evolutes and focal surfaces of framed immersions in the Euclidean space, P. Roy. Soc. Edinb. A, 150 (2020), 497–516. http://dx.doi.org/10.1017/prm.2018.84 doi: 10.1017/prm.2018.84
    [18] S. Honda, Rectifying developable surfaces of framed base curves and framed helices, Advanced Studies in Pure Mathematics, 78 (2018), 273–292. http://dx.doi.org/10.2969/aspm/07810273 doi: 10.2969/aspm/07810273
    [19] J. Huang, D. Pei, Singularities of non-developable surfaces in three-dimensional Euclidean space, Mathematics, 7 (2019), 1106. http://dx.doi.org/10.3390/math7111106 doi: 10.3390/math7111106
    [20] Y. Li, S. Şenyurt, A. Özduran, D. Canlı, The characterizations of parallel q-equidistant ruled surfaces, Symmetry, 14 (2022), 1879. http://dx.doi.org/10.3390/sym14091879 doi: 10.3390/sym14091879
    [21] Y. Li, F. Mofarreh, R. Abdel-Baky, Timelike circular surfaces and singularities in Minkowski 3-space, Symmetry, 14 (2022), 1914. http://dx.doi.org/10.3390/sym14091914 doi: 10.3390/sym14091914
    [22] Y. Li, N. Alluhaibi, R. Abdel-Baky, One-parameter Lorentzian dual spherical movements and invariants of the axodes, Symmetry, 14 (2022), 1930. http://dx.doi.org/10.3390/sym14091930 doi: 10.3390/sym14091930
    [23] Y. Li, K. Eren, K. Ayvacı, S. Ersoy, Simultaneous characterizations of partner ruled surfaces using Flc frame, AIMS Mathematics, 7 (2022), 20213–20229. http://dx.doi.org/10.3934/math.20221106 doi: 10.3934/math.20221106
    [24] Y. Li, S. Nazra, R. Abdel-Baky, Singularity properties of timelike sweeping surface in Minkowski 3-space, Symmetry, 14 (2022), 1996. http://dx.doi.org/10.3390/sym14101996 doi: 10.3390/sym14101996
    [25] Y. Li, R. Prasad, A. Haseeb, S. Kumar, S. Kumar, A study of Clairaut semi-invariant Riemannian maps from cosymplectic manifolds, Axioms, 11 (2022), 503. http://dx.doi.org/10.3390/axioms11100503 doi: 10.3390/axioms11100503
    [26] S. Gür, S. Şenyurt, L. Grilli, The dual expression of parallel Equidistant ruled surfaces in Euclidean 3-space, Symmetry, 14 (2022), 1062. http://dx.doi.org/10.3390/sym14051062 doi: 10.3390/sym14051062
    [27] S. Şenyurt, S. Gür, Spacelike surface geometry, Int. J. Geom. Methods M., 14 (2017), 1750118. http://dx.doi.org/10.1142/S0219887817501183 doi: 10.1142/S0219887817501183
    [28] Ö. Yıldız, M. Akyiğit, M. Tosun, On the trajectory ruled surfaces of framed base curves in the Euclidean space, Math. Method. Appl. Sci., 44 (2021), 7463–7470. http://dx.doi.org/10.1002/mma.6267 doi: 10.1002/mma.6267
    [29] K. Eren, Ö. Yıldız, M. Akyiğit, Tubular surfaces associated with framed base curves in Euclidean 3-space, Math. Method. Appl. Sci., in press. http://dx.doi.org/10.1002/mma.7590
    [30] M. Akyiğit, Ö. Yıldız, On the Framed normal curves in Euclidean 4-space, Fundamental Journal of Mathematics and Applications, 4 (2021), 258–263. http://dx.doi.org/10.33401/fujma.992917 doi: 10.33401/fujma.992917
    [31] B. Doğan Yazıcı, S. Özkaldı Karakuş, M. Tosun, On the classification of framed rectifying curves in Euclidean space, Math. Method. Appl. Sci., in press. http://dx.doi.org/10.1002/mma.7561
    [32] B. Doğan Yazıcı, S. Özkaldı Karakuş, M. Tosun, Characterizations of framed curves in four-dimensional Euclidean space, Universal Journal of Mathematics and Applications, 4 (2021), 125–131. http://dx.doi.org/10.32323/ujma.1008148 doi: 10.32323/ujma.1008148
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1877) PDF downloads(181) Cited by(11)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog