This paper delves into quasi bi-slant conformal ξ⊥-submersions from Sasakian manifolds onto Riemannian manifolds, which is a generalization of quasi hemi-slant conformal submersions. Our research involves studying the integrability conditions for distributions, taking into account the geometry of their leaves. We also provide decomposition theorems for quasi bi-slant conformal ξ⊥-submersions, and showcase non-trivial examples to illustrate our findings. Furthermore, we analyze the φ-pluriharmonicity of such submersions.
Citation: Ibrahim Al-Dayel, Mohammad Shuaib, Sharief Deshmukh, Tanveer Fatima. ϕ-pluriharmonicity in quasi bi-slant conformal ξ⊥-submersions: a comprehensive study[J]. AIMS Mathematics, 2023, 8(9): 21746-21768. doi: 10.3934/math.20231109
[1] | Ibrahim Al-Dayel, Mohammad Shuaib . Conformal bi-slant submersion from Kenmotsu manifolds. AIMS Mathematics, 2023, 8(12): 30269-30286. doi: 10.3934/math.20231546 |
[2] | Md Aquib, Ibrahim Al-Dayal, Mohd Iqbal, Meraj Ali Khan . Geometric inequalities and equality conditions for slant submersions in Kenmotsu space forms. AIMS Mathematics, 2025, 10(4): 8873-8890. doi: 10.3934/math.2025406 |
[3] | Richa Agarwal, Fatemah Mofarreh, Sarvesh Kumar Yadav, Shahid Ali, Abdul Haseeb . On Riemannian warped-twisted product submersions. AIMS Mathematics, 2024, 9(2): 2925-2937. doi: 10.3934/math.2024144 |
[4] | Muqeem Ahmad, Mobin Ahmad, Fatemah Mofarreh . Bi-slant lightlike submanifolds of golden semi-Riemannian manifolds. AIMS Mathematics, 2023, 8(8): 19526-19545. doi: 10.3934/math.2023996 |
[5] | Fawaz Alharbi, Yanlin Li . Vector fields on bifurcation diagrams of quasi singularities. AIMS Mathematics, 2024, 9(12): 36047-36068. doi: 10.3934/math.20241710 |
[6] | Meraj Ali Khan, Ali H. Alkhaldi, Mohd. Aquib . Estimation of eigenvalues for the $ \alpha $-Laplace operator on pseudo-slant submanifolds of generalized Sasakian space forms. AIMS Mathematics, 2022, 7(9): 16054-16066. doi: 10.3934/math.2022879 |
[7] | Simone Fiori . Coordinate-free Lie-group-based modeling and simulation of a submersible vehicle. AIMS Mathematics, 2024, 9(4): 10157-10184. doi: 10.3934/math.2024497 |
[8] | Biswabismita Bag, Meraj Ali Khan, Tanumoy Pal, Shyamal Kumar Hui . Geometric analysis on warped product semi-slant submanifolds of a locally metallic Riemannian space form. AIMS Mathematics, 2025, 10(4): 8131-8143. doi: 10.3934/math.2025373 |
[9] | Ufuk Öztürk, Zeynep Büşra Alkan . Darboux helices in three dimensional Lie groups. AIMS Mathematics, 2020, 5(4): 3169-3181. doi: 10.3934/math.2020204 |
[10] | Noura Alhouiti . Existence and uniqueness theorems for pointwise-slant immersions in Sasakian space forms. AIMS Mathematics, 2023, 8(8): 17470-17483. doi: 10.3934/math.2023892 |
This paper delves into quasi bi-slant conformal ξ⊥-submersions from Sasakian manifolds onto Riemannian manifolds, which is a generalization of quasi hemi-slant conformal submersions. Our research involves studying the integrability conditions for distributions, taking into account the geometry of their leaves. We also provide decomposition theorems for quasi bi-slant conformal ξ⊥-submersions, and showcase non-trivial examples to illustrate our findings. Furthermore, we analyze the φ-pluriharmonicity of such submersions.
Abbreviations: RS: Riemannian submersion; RM: Riemannian Manifold; ACM manifold: Almost contact metric manifold; QBSC ξ⊥-submersion: Quasi bi-slant conformal ξ⊥-submersion; G: gradient
Immersions and submersions play crucial roles in differential geometry, with slant submersions being a particularly intriguing subject in the fields of differential, complex and contact geometry. The study of Riemannian submersions between Riemannian manifolds was first explored by O'Neill [23] and Gray [14], independently, and subsequently led to investigations of Riemannian submersions between almost Hermitian manifolds, known as almost Hermitian submersions, by Watson in 1976 [34]. Riemannian submersions have many applications in mathematics and physics, especially in Yang-Mills theory [8,35] and in Kaluza-Klein theory [18,21].
Semi-invariant submersions, a generalization of holomorphic submersions and anti-invariant submersions, were introduced by Sahin in 2013 [30]. In 2016, Tatsan, Sahin, and Yanan studied hemi-slant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds, and presented several decomposition theorems for them [33]. R. Prasad et al. further examined quasi bi-slant submersions from almost contact metric manifolds onto Riemannian manifolds [25], as well as from Kenmotsu manifolds [26], which represents a step forward in the study of Riemannian submersions.
Since then, many authors have explored different types of Riemannian submersions, including anti-invariant submersions [4,29], slant submersions [11,31], semi-slant submersions [17,24] and hemi-slant submersions [1,20], from both almost Hermitian manifolds and almost contact metric manifolds. These studies have greatly expanded our understanding of the geometrical structures of Riemannian manifolds.
The concept of almost contact Riemannian submersions from almost contact manifold was introduced by Chinea in [9]. Chinea also examined the fibre space, base space and total space using a differential geometric perspective. To generalize Riemannian submersions, Gundmundsson and Wood [15,16] presented horizontally conformal submersion, defined as: Let (M1,g1) and (M2,g2) be two Riemannian manifolds of dimension m1 and m2, respectively. A smooth map Ψ:(M1,g1)→(M2,g2) is called a horizontally conformal submersion, if there is a positive function λ such that
λ2g1(X1,X2)=g2(Ψ∗X1,Ψ∗X2), | (1.1) |
for all X1,X2∈Γ(kerΨ∗)⊥. Thus, Riemannian submersion is a particular horizontally conformal submersion with λ=1. Later on, Fuglede [13] and Ishihara [19] separately studied horizontally conformal submersions. Additionally, various other kind of submersions, such as conformal slant submersions [3], conformal anti-invariant submersions [6], conformal semi-slant submersions [2], conformal semi-invariant submersions [5] and conformal anti-invariant submersions [27] have been studied by Akyol and Sahin and R. Prasad et al. [27]. Furthermore, Shuaib and Fatima recently explored conformal hemi-slant Riemannian submersions from almost product manifolds onto Riemannian manifolds [32].
In this paper, we study quasi bi-slant conformal ξ⊥-submersions from Sasakian manifold onto a Riemannian manifold considering the Reeb vector field ξ horizontal. This paper is divided into six sections. Section 2 contains definitions of almost contact metric manifolds and, in particular, Sasakian manifolds. In section 3, fundamental results for quasi bi-slant conformal submersion are investigated, which are necessary for our main results. The conditions of integrability and total geodesicness of distributions are explored in Section 4. Section 5 provides some condition under which a Riemannian submersion becomes totally geodesic as well as some decomposition theorems for quasi bi-slant conformal submersion are obtained. The last section discusses ϕ-pluriharmonicity of quasi bi-slant conformal ξ⊥-submersions.
Let M be a (2n+1)-dimensional almost contact manifold with almost contact structures (ϕ,ξ,η), where a (1,1) tensor field ϕ, a vector field ξ and a 1-form η satisfying
ϕ2=−I+η⊗ξ,ϕξ=0,η∘ϕ=0,η(ξ)=1, | (2.1) |
where I is the identity tensor. The almost contact structure is said to be normal if N+dη⊗ξ=0, where N is the Nijenhuis tensor of ϕ. Suppose that a Riemannian metric tensor g is given in M and satisfies the condition
g(ϕˆU,ϕˆV)=g(ˆU,ˆV)−η(ˆU)η(ˆV),η(ˆU)=g(ˆU,ξ). | (2.2) |
Then (ϕ,ξ,η,g)-structure is called an almost contact metric structure. Define a tensor field Φ of type (0,2) by Φ(ˆX,ˆY)=g(ϕˆX,ˆY). If dη=Φ, then an almost contact metric structure is said to be normal contact metric structure. Let Φ be the fundamental 2-form on M, i.e, Φ(ˆU,ˆV)=g(ˆU,ϕˆV). If Φ=dη, M is said to be a contact manifold. A normal contact metric structure is called a Sasakian structure, which satisfies
(∇ˆUϕ)ˆV=g(ˆU,ˆV)ξ−η(ˆV)ˆU, | (2.3) |
where ∇ is the Levi-Civita connection of g. From above formula, we have for Sasakian manifold
∇ˆUξ=−ϕˆU. | (2.4) |
The covariant derivative of ϕ is defined by
(∇ˆU1ϕ)ˆV1=∇ˆU1ϕˆV1−ϕ∇ˆU1ˆV1, | (2.5) |
for any vector fields ˆU1,ˆV1∈Γ(TM). Now, we provide a definition for conformal submersion and discuss some useful results that help us to achieve our main results.
Definition 2.1. Let Ψ be a Riemannian submersion (RS) from an ACM manifold (ˉQ1,ϕ,ξ,η,g1) onto a Riemannian manifold (RM) (ˉQ2,g2). Then Ψ is called a horizontally conformal submersion, if there is a positive function λ such that
g1(ˆU1,ˆV1)=1λ2g2(Ψ∗ˆU1,Ψ∗ˆV1), | (2.6) |
for any ˆU1,ˆV1∈Γ(kerΨ∗)⊥. It is obvious that every RS is a particularly horizontally conformal submersion with λ=1.
Let Ψ:(ˉQ1,ϕ,ξ,η,g1)→(ˉQ2,g2) be a RS. A vector field ˆX on ˉQ1 is called a basic vector field if ˆX∈Γ(kerΨ∗)⊥ and Ψ-related with a vector field ˆX on ˉQ2 i.e Ψ∗(ˆX(q))=ˆXΨ(q) for q∈ˉQ1.
The formulas provide the two (1,2) tensor fields T and A by O'Neill are
AE1F1=H∇HE1VF1+V∇HE1HF1, | (2.7) |
TE1F1=H∇VE1VF1+V∇VE1HF1, | (2.8) |
for any E1,F1∈Γ(TˉQ1) and ∇ is Levi-Civita connection of g1. Note that a RS Ψ:(ˉQ1,ϕ,ξ,η,g1)→(ˉQ2,g2) has totally geodesic fibers if and only if T vanishes identically. From Eqs (2.7) and (2.8), we can deduce
∇ˆU1ˆV1=TˆU1ˆV1+V∇ˆU1ˆV1, | (2.9) |
∇ˆU1ˆX1=TˆU1ˆX1+H∇ˆU1ˆX1, | (2.10) |
∇ˆX1ˆU1=AˆX1ˆU1+V1∇ˆX1ˆU1, | (2.11) |
∇ˆX1ˆY1=H∇ˆX1ˆY1+AˆX1ˆY1, | (2.12) |
for any vector fields ˆU1,ˆV1∈Γ(kerΨ∗) and ˆX1,ˆY1∈Γ(kerΨ∗)⊥ [12].
It is easily seen that T and A are skew-symmetric, that is
g(AˆXE1,F1)=−g(E1,AˆXF1),g(TˆVE1,F1)=−g(E1,TˆVF1), | (2.13) |
for any vector fields E1,F1∈Γ(TpˉQ1).
Definition 2.2. A horizontally conformally submersion Ψ:ˉQ1→ˉQ2 is called horizontally homothetic if the gradient (G) of its dilation λ is vertical, i.e.,
H(Gλ)=0, | (2.14) |
at p∈TM1, where H is the complement orthogonal distribution to ν=kerΨ∗ in Γ(TpM).
The second fundamental form of smooth map Ψ is given by the formula
(∇Ψ∗)(ˆU1,ˆV1)=∇ΨˆU1Ψ∗ˆV1−Ψ∗∇ˆU1ˆV1, | (2.15) |
and the map be totally geodesic if (∇Ψ∗)(ˆU1,ˆV1)=0 for all ˆU1,ˆV1∈Γ(TpM) where ∇ and ∇Ψ are Levi-Civita and pullback connections.
Lemma 2.1. Let Ψ:ˉQ1→ˉQ2 be a horizontal conformal submersion. Then, we have
(i) (∇Ψ∗)(ˆX1,ˆY1)=ˆX1(lnλ)Ψ∗(ˆY1)+ˆY1(lnλ)Ψ∗(ˆX1)−g1(ˆX1,ˆY1)Ψ∗(gradlnλ),
(ii) (∇Ψ∗)(ˆU1,ˆV1)=−Ψ∗(TˆU1ˆV1),
(iii) (∇Ψ∗)(ˆX1,ˆU1)=−Ψ∗(∇ˆX1ˆU1)=−Ψ∗(AˆX1ˆU1),
for any horizontal vector fields ˆX1,ˆY1 and vertical vector fields ˆU1,ˆV1 [7].
Definition 2.3. Suppose D is a k-dimensional smooth distribution on M. Then An immersed submanifold i:N↪M is called an integral manifold for D if for every x∈N, the image of diN:TpN→TpM is Dp. We say the distribution Dp is integrable if through each point of M there exists an integral manifold of D.
Further, A distribution D is involutive if it satisfies the Frobenius condition such that if X,Y∈Γ(TM) belongs to D, so [X,Y]∈D. Frobenius theorem state that an involutive distribution is integrable.
Definition 2.4. Let M be n-dimensional smooth manifold. A foliation F of M is a decomposition of M into a union of disjoint connected submanifolds M=∪L∈FL, called the leaves of the foliation, such that for each m∈M, there is a neighborhood U of M and a smooth submersion fU:U→Rk with f−1U(x) a leaf of F|U the restriction of the foliation to U, for each x∈Rk.
Definition 2.5. Let M be a Riemannian manifold, and let F be a foliation on M. F is totally geodesic if each leaf L is a totally geodesic submanifold of M; that is, any geodesic tangent to L at some point must lie within L.
Definition 3.1. Let (ˉQ1,ϕ,ξ,η,g1) be a ACM manifold and (ˉQ2,g2) a Riemannian manifold. A RS Ψ:ˉQ1→ˉQ2 where ξ∈Γ(kerΨ∗)⊥ is called quasi bi-slant conformal ξ⊥-submersion (QBSCξ⊥-submersion) if there exists three mutually orthogonal distributions D,Dθ1 and Dθ2 such that
(i) kerΨ∗=D⊕Dθ1⊕Dθ2,
(ii) D is invariant. i.e., ϕD=D,
(iii) ϕDθ1⊥Dθ2 and ϕDθ2⊥Dθ1,
(iv) for any non-zero vector field ˆV1∈(Dθ1)p,p∈ˉQ1 the angle θ1 between (Dθ1)p and ϕˆV1 is constant and independent of the choice of the point p and ˆV1∈(Dθ1)p,
(v) for any non-zero vector field ˆV1∈(Dθ2)q,q∈ˉQ1 the angle θ2 between (Dθ2)q and ϕˆV1 is constant and independent of the choice of the point q and ˆV1∈(Dθ2)q,
where θ1 and θ2 are called the slant angles of submersion.
If we suppose m1, m2 and m3 are the dimensions of D, Dθ1 and Dθ2 respectively, then we have the following:
(i) If m1≠0, m2=0 and m3=0, then Ψ is an invariant submersion.
(ii) If m1≠0, m2≠0,0<θ1<π2 and m3=0, then Ψ is a proper semi-slant submersion.
(iii) If m1=0, m2=0 and m3≠0,0<π2, then Ψ is a slant submersion with slant angle θ2.
(iv) If m1=0,m2≠0,0<θ1<π2 and m3≠0,θ2=π2, then Ψ proper hemi-slant submersion.
(v) If m1=0,m2≠0,0<θ1<π2 and m3≠0,0<,θ2<π2, then Ψ is proper bi-slant submersion with slant angles θ1 and θ2.
(vi) If m1≠0,m2≠0,0<θ1<π2 and m3≠0,0<θ2<π2, then Ψ is proper quasi bi-slant submersion with slant angles θ1 and θ2.
We construct an example of QBSCξ⊥-submersions from Sasakian manifold. Let (R2k+1,g2k+1,ϕ,ξ,η) denote the manifold with its usual Sasakian structure given by
ϕ(k∑i=1(Xi∂∂xi+Yi∂∂yi)+Z∂∂z)=k∑i=1(Yi∂∂xi−Xi∂∂yi+Yiyi∂∂z), |
where x1,…,xk,y1….,yk,z are the cartesian coordinates. Its Riemannian metric g is defined as g=η⊗η+14(∑ki=1[dxi⊗dxi+dyi⊗dyi]), where η is its usual contact form and given as η = 12(dz−∑ki=1Yidxi). The characteristic vector field ξ is given by 2∂∂z. The vector fields Ei=2∂∂yi,Ek+i=2(∂∂xi+yi∂∂z) and ξ form a ϕ-basis for the Sasakian structure and (R2k+1,ϕ,ξ,η,g) is a Sasakian manifold. Throughout this section we will use the notation.
Example. Let (R15,ϕ,ξ,η,g) be Sasakian manifold. Let Ψ:R15→R7 be map defined by Ψ(x1,…,x7,y1,…,y7,z)=√π(cosθ1x3+ sinθ1x4,x5,x7,y3,cosθ2y5+sinθ2y6,y7,z), which is a quasi bi-slant conformal submersion with dilation λ=√π such that
V1=2(∂∂x1+y1∂∂z),V2=2(∂∂x2+y2∂∂z),V3=2[sinθ1(∂∂x3+y3∂∂z)−cosθ1(∂∂x4+y4∂∂z)],V4=2(∂∂x6+y6∂∂z),V5=2∂∂y1,V6=2∂∂y2,V7=2∂∂y4,V8=2(sinθ2∂∂y5−cosθ2∂∂y6). |
kerΨ∗=D⊕Dθ1⊕Dθ2, where
D=⟨V1=2(∂∂x1+y1∂∂z),V2=2(∂∂x2+y2∂∂z),V5=2∂∂y1,V6=2∂∂y2⟩, Dθ1=⟨V3=2[sinθ1(∂∂x3+y3∂∂z)−cosθ1(∂∂x4+y4∂∂z)],V7=2∂∂y4⟩, Dθ2=⟨V4=2(∂∂x6+y6∂∂z),V8=2(sinθ2∂∂y5−cosθ2∂∂y6)⟩, |
and
(kerΨ∗)⊥=⟨2(cosθ1∂∂x3+sinθ1∂∂x4),2∂∂x5,2∂∂x7,2∂∂y3,2(cosθ2∂∂y5+sinθ2∂∂y6),2∂∂y7,2∂∂z.⟩, |
where θ1 and θ2 are the slant angles of the submersion for the distribution Dθ1 and Dθ2, respectively.
Let Ψ be a QBSCξ⊥-submersion from an ACM manifold (ˉQ1,ϕ,ξ,η,g1) onto a RM (ˉQ2,g2). Then, for any U∈(kerΨ∗), we have
ˆU=P1ˆU+P2ˆU+P3ˆU, | (3.1) |
where P1,P2 and P3 are the projections morphism onto D,Dθ1, and Dθ2. Now, for any ˆU∈(kerΨ∗), we have
ϕˆU=αˆU+βˆU, | (3.2) |
where αˆU∈Γ(kerΨ∗) and βˆU∈Γ(kerΨ∗)⊥. From Eqs (3.1) and (3.2), we have
ϕˆU=ϕ(P1ˆU)+ϕ(P2ˆU)+ϕ(P3ˆU)=α(P1ˆU)+β(P1ˆU)+α(P2ˆU)+β(P2ˆU)+α(P3ˆU)+β(P3ˆU). |
Since ϕD=D and β(P1ˆU)=0, we have
ϕˆU=α(P1ˆU)+α(P2ˆU)+β(P2ˆU)+α(P3ˆU)+β(P3ˆU). |
Hence we have the decomposition as
ϕ(kerΨ∗)=αD⊕αDθ1⊕αDθ2⊕βDθ1⊕βDθ2. | (3.3) |
From Eq (3.3), we have the following decomposition:
(kerΨ∗)⊥=βDθ1⊕βDθ2⊕μ, | (3.4) |
where μ is the orthogonal complement to βDθ1⊕βDθ2 in (kerΨ∗)⊥ such that μ=(ϕμ)⊕<ξ> and μ is invariant with respect to ϕ. Now, for any ˆX∈Γ(kerΨ∗)⊥, we have
ϕˆX=CˆX+BˆX, | (3.5) |
where CˆX∈Γ(kerΨ∗) and BˆX∈Γ(kerΨ∗)⊥.
Lemma 3.1. Let (ˉQ1,ϕ,ξ,η,g1) be an ACM manifold and (ˉQ2,g2) be a RM. If Ψ:ˉQ1→ˉQ2 is a QBSCξ⊥-submersion, then we have
−ˆU=α2ˆU+CβˆU,βαˆU+BβˆU=0, |
−ˆX+η(ˆX)ξ=βCˆX+B2ˆX,αCˆX+CBˆX=0, |
for ˆU∈Γ(kerΨ∗) and ˆX∈Γ(kerΨ∗)⊥.
Proof. On using Eqs (2.1), (3.2) and (3.5), we get the desired results.
Since Ψ:ˉQ1→ˉQ2 is a QBSCξ⊥-submersion, Then let us provide some helpful findings that will be utilise throughout the paper.
Lemma 3.2. Let Ψ be a QBSCξ⊥-submersion from an ACM manifold (ˉQ1,ϕ,ξ,η,g1) onto a RM (ˉQ2,g2), then we have
(i) α2ˆU=−cos2θ1ˆU,
(ii) g1(αˆU,αˆV)=cos2θ1g1(ˆU,ˆV),
(iii) g(βˆU,βˆV)=sin2θ1g1(ˆU,ˆV),
for any vector fields ˆU,ˆV∈Γ(Dθ1).
Lemma 3.3. Let Ψ be a QBSCξ⊥-submersion from an ACM manifold (ˉQ1,ϕ,ξ,η,g1) onto a RM (ˉQ2,g2), then we have
(i) α2ˆZ=−cos2θ2ˆZ,
(ii) g1(αˆZ,αˆW)=cos2θ2g1(ˆZ,ˆW),
(iii) g1(βˆZ,βˆW)=sin2θ2g1(ˆZ,ˆW),
for any vector fields ˆZ,ˆW∈Γ(Dθ2).
Proof. The proof of above Lemmas is similar to the proof of the Theorem 2.2 of [10].
Let (ˉQ2,g2) be a Riemannian manifold and (ˉQ1,ϕ,ξ,η,g1) be a Sasakian manifold. We now consider how the Sasakian structure on ˉQ1 affects the tensor fields T and A of a QBSCξ⊥-submersion Ψ:(ˉQ1,ϕ,ξ,η,g1)→(ˉQ2,g2).
Lemma 3.4. Let Ψ be a QBSCξ⊥-submersion from Sasakian manifold (ˉQ1,ϕ,ξ,η,g1) onto a RM (ˉQ2,g2), then we have
AˆXCˆY+H∇ˆXBˆY=BH∇ˆXˆY+βAˆXˆY+g1(ˆX,ˆY)ξ−η(ˆY)ˆX, | (3.6) |
V∇ˆXCˆY+AˆXBˆY=CH∇ˆXˆY+αAˆXˆY, | (3.7) |
V∇ˆXαˆV+AˆXβˆV=CAˆXˆV+αV∇ˆXˆV, | (3.8) |
AˆXαˆV+H∇ˆXβˆV=BAˆXˆV+βV∇ˆXˆV, | (3.9) |
V∇ˆVCˆX+TˆVBˆX=αTˆVBˆX+CH∇ˆVˆX−η(ˆX)ˆV, | (3.10) |
TˆVCˆX+H∇ˆVBˆX=βTˆVˆX+BH∇ˆVˆX, | (3.11) |
V∇ˆUαˆV+TˆUβˆV=CTˆUˆV+αV∇ˆUˆV, | (3.12) |
TˆUαˆV+H∇ˆUβˆV=BTˆUˆV+βV∇ˆUˆV+g1(ˆU,ˆV)ξ, | (3.13) |
for any vector fields ˆU,ˆV∈Γ(kerΨ∗) and ˆX,ˆY∈Γ(kerΨ∗)⊥.
Proof. From (2.5), (2.12) and (3.5), we obtained the conditions (3.6) and (3.7). Again using Eqs (3.2), (3.5), (2.9)–(2.12) and (2.5), finish he result.
Now we will go through some fundamental results that can be used to investigate the geometry of QBSCξ⊥-submersion Ψ:ˉQ1→ˉQ2. For this, define the following:
(∇ˆUα)ˆV=V∇ˆUαˆV−αV∇ˆUˆV, | (3.14) |
(∇ˆUβ)ˆV=H∇ˆUβˆV−βV∇ˆUˆV, | (3.15) |
(∇ˆXC)ˆY=V∇ˆXCˆY−CH∇ˆXˆY, | (3.16) |
(∇ˆXB)ˆY=H∇ˆXBˆY−BH∇ˆXˆY, | (3.17) |
for any vector fields ˆU,ˆV∈Γ(kerΨ∗) and ˆX,ˆY∈Γ(kerΨ∗)⊥.
Lemma 3.5. Let (ˉQ1,ϕ,ξ,η,g1) be a Sasakian manifold and (ˉQ2,g2) be a RM. If Ψ:ˉQ1→ˉQ2 is a QBSCξ⊥-submersion, then we have
(∇ˆUα)ˆV=CTˆUˆV−TˆUβˆV, |
(∇ˆUβ)ˆV=BTˆUˆV−TˆUαˆV, |
(∇ˆXC)ˆY=αAˆXˆY−AˆXBˆY, |
(∇ˆXB)ˆY=βAˆXˆY−AˆXCˆY, |
for all vector fields ˆU,ˆV∈Γ(kerΨ∗) and ˆX,ˆY∈Γ(kerΨ∗)⊥.
Proof. On using Eqs (2.5), (2.9)–(2.12) and (3.14)–(3.17), we get the desired result.
If α and β, the tensor fields, are parallel with respect to the connection ∇ of ˉQ1 then, we have
CTˆUˆV=TˆUβˆV,BTˆUˆV=TˆUαˆV, |
for any vector fields ˆU,ˆV∈Γ(TˉQ1).
Since Ψ:ˉQ1→ˉQ2 is a QBSC ξ⊥-submersion, where (ˉQ1,ϕ,ξ,η,g1) represents a Kenmotsu manifold and (ˉQ2,g2) a Riemannian manifold. The definition of QBSC ξ⊥-submersion ensures the existence of three mutually orthogonal distributions, which include an invariant distribution D, a pair of slant distributions Dθ1 and Dθ2. We start the discussion on the integrability of distributions by determining the integrability of the slant distribution in the manner described below:
Theorem 4.1. Let Ψ be a QBSCξ⊥-submersion from Sasakian manifold (ˉQ1,ϕ,ξ,η,g1) onto a RM (ˉQ2,g2). Then slant distribution Dθ1 is integrable if and only if
1λ2{g2(∇ΨˆU1Ψ∗βˆV1+∇ΨˆV1Ψ∗βˆU1,Ψ∗βP3ˆZ)}=1λ2{g2((∇Ψ∗)(ˆU1,βˆV1)+(∇Ψ∗)(ˆV1,βˆU1),Ψ∗βP3ˆZ)}−g1(∇ˆV1βαˆU1−∇ˆU1βαˆV1,ˆZ)−g1(TˆU1βˆV1−TˆV1βˆU1,ϕP1ˆZ+αP3ˆZ), | (4.1) |
for any ˆU1,ˆV1∈Γ(Dθ1) and ˆZ∈Γ(D⊕Dθ2).
Proof. For all ˆU1,ˆV1∈Γ(Dθ1) and ˆZ∈Γ(D⊕Dθ2) with using Eqs (2.2), (2.5), (2.14) and (3.2), we get
g1([ˆU1,ˆV1],ˆZ)=g1(∇ˆU1αˆV1,ϕˆZ)+g1(∇ˆU1βˆV1,ϕˆZ)−g1(∇ˆV1αˆU1,ϕˆZ)−g1(∇ˆV1βˆU1,ϕˆZ). |
By using Eqs (2.5), (2.14) and (3.2), we have
g1([ˆU1,ˆV1],ˆZ)=−g1(∇ˆU1α2ˆV1,ˆZ)−g1(∇ˆU1βαˆV1,ˆZ)+g1(∇ˆV1α2ˆU1,ˆZ)+g1(∇ˆV1βαˆU1,ˆZ)+g1(∇ˆU1βˆV1,ϕP1ˆZ+αP3ˆZ+βP3ˆZ)−g1(∇ˆV1βˆU1,ϕP1ˆZ+αP3ˆZ+βP3ˆZ). |
Taking account the fact of Lemma 3.2 with Eq (2.10), we get
g1([ˆU1,ˆV1],ˆZ)=cos2θ1g1([ˆU1,ˆV1],ˆZ)+g1(∇ˆV1βαˆU1−∇ˆU1βαˆV1,ˆZ)+g1(TˆU1βˆV1−TˆV1βˆU1,ϕP1ˆZ+αP3ˆZ)+g1(H∇ˆU1βˆV1−H∇ˆV1βˆU1,βP3ˆZ). |
On using Eq (2.6), formula (2.15) with Lemma 2.1, we finally get
sin2θ1g1([ˆU1,ˆV1],ˆZ)=1λ2{g2(∇ΨˆU1Ψ∗βˆV1−∇ΨˆV1Ψ∗βˆU1,Ψ∗βP3ˆZ)}+1λ2{g2((∇Ψ∗)(ˆU1,βˆV1),Ψ∗βP3ˆZ)+g2((∇Ψ∗)(ˆV1,βˆU1),Ψ∗βP3ˆZ)}+g1(TˆU1βˆV1−TˆV1βˆU1,ϕP1ˆZ+αP3ˆZ)+g1(∇ˆV1βαˆU1−∇ˆU1βαˆV1,ˆZ). |
In a same manner, we can obained the condition of integrability for Dθ2 as follows:
Theorem 4.2. Let Ψ:(ˉQ1,ϕ,ξ,η,g1)→(ˉQ2,g2) be a QBSCξ⊥-submersion, where (ˉQ1,ϕ,ξ,η,g1) a Sasakian manifold and (ˉQ2,g2) a RM. Then slant distribution Dθ2 is integrable if and only if
−1λ2{g2((∇Ψ∗)(ˆU2,βˆV2)−(∇Ψ∗)(ˆV2,βˆU2),Ψ∗βP2ˆZ)}=g1(TˆV2βαˆU2−TˆU2βαˆV2,ˆZ)+g1(TˆU2βˆV2−TˆV2βˆU2,ϕP1ˆZ+αP2ˆZ)+1λ2{g2(∇ΨˆU2Ψ∗βˆV2−∇ΨˆV2Ψ∗βˆU2,Ψ∗βP2ˆZ)}, |
for any ˆU2,ˆV2∈Γ(Dθ2) and ˆZ∈Γ(D⊕Dθ1).
Proof. On using Eqs (2.2), (2.5), (2.14) and (3.2), we have
g1([ˆU2,ˆV2],ˆZ)=g1(∇ˆV2α2ˆU2,ˆZ)+g1(∇ˆV2βαˆU2,ˆZ)−g1(∇ˆU2α2ˆV2,ˆZ)−g1(∇ˆU2βαˆV2,ˆZ)+g1(∇ˆU2βˆV2−∇ˆV2βˆU2,ϕˆZ), |
for any ˆU2,ˆV2∈Γ(Dθ2) and ˆZ∈Γ(D⊕Dθ1). From Eq (2.10) and Lemma 3.3, we get
sin2θ2g1([ˆU2,ˆV2],ˆZ)=g1(TˆV2βαˆU2−TˆU2βαˆV2,ˆZ)+g1(TˆU2βˆV2−TˆV2βˆU2,ϕP1ˆZ+αP2ˆZ)+g1(H∇ˆU2βˆV2−H∇ˆV2βˆU2,βP2ˆZ). |
Since Ψ is QBSCξ⊥-submersion, using conformality condition with Eqs (2.6) and (2.15), we finally get
sin2θ2g1([ˆU2,ˆV2],ˆZ)=g1(TˆV2βαˆU2−TˆU2βαˆV2,ˆZ)+g1(TˆU2βˆV2−TˆV2βˆU2,ϕP1ˆZ+αP2ˆZ)+1λ2{g2((∇Ψ∗)(ˆU2,βˆV2)−(∇Ψ∗)(ˆV2,βˆU2),Ψ∗βP2ˆZ)}+1λ2{g2(∇ΨˆU2Ψ∗βˆV2−∇ΨˆV2Ψ∗βˆU2,Ψ∗βP2ˆZ)}. |
This completes the proof of the theorem.
Since, the invariant distribution is mutually orthogonal to the slant distributions in accordance with the concept of QBSCξ⊥-submersion, this led us to investigate the necessary and sufficient condition for the invariant distribution to be integrable.
Theorem 4.3. Let Ψ:(ˉQ1,ϕ,ξ,η,g1)→(ˉQ2,g2) be a QBSCξ⊥-submersion, where (ˉQ1,ϕ,ξ,η,g1) a Sasakian manifold and (ˉQ2,g2) a RM. Then the invariant distribution D is integrable if and only if
g1(TˆUαP1ˆV−TˆVαP1ˆU,βP2ˆZ+βP3ˆW)−g1(V∇ˆUαP1ˆV−V∇ˆVαP1ˆU,αP2ˆZ+αP3ˆZ)=0, | (4.2) |
for any ˆU,ˆV∈Γ(D) and ˆZ∈Γ(Dθ1⊕Dθ2).
Proof. For all ˆU,ˆV∈Γ(D) and ˆZ∈Γ(Dθ1⊕Dθ2) with using Eqs (2.2), (2.9), (2.14) and decomposition (3.1), we have
g1([ˆU,ˆV],ˆZ)=g1(∇ˆUαP1ˆV,ϕP2ˆZ+ϕP3ˆZ)−g1(∇ˆVαP1ˆU,ϕP2ˆZ+ϕP3ˆZ). |
On using Eq (3.2), we finally have
g1([ˆU,ˆV],ˆZ)=g1(TˆUαP1ˆV−TˆVαP1ˆU,βP2ˆZ+βP3ˆZ)+g1(V∇ˆUαP1ˆV−VAˆVαP1ˆU,αP2ˆZ+αP3ˆZ). |
This completes the proof of theorem.
The necessary and sufficient prerequisites that must also exist in order for distributions to be totally geodesic will now be discussed after the necessary conditions for distributions integrability. We start with investigating the necessary and sufficient conditions for distributions to be totally geodesic.
Theorem 4.4. Let Ψ:(ˉQ1,ϕ,ξ,η,g1)→(ˉQ2,g2) be a QBSCξ⊥-submersion, where (ˉQ1,ϕ,ξ,η,g1) a Sasakian manifold and (ˉQ2,g2) a RM. Then invariant distribution D defines totally geodesic foliation on ˉQ1 if and only if
(i) λ−2g2{((∇Ψ∗)(ˆU,ϕˆV),Ψ∗βˆZ)}=g1(V∇ˆUϕˆV,αˆZ),
(ii) λ−2{g2((∇Ψ∗)(ˆU,ϕˆV),Ψ∗BˆX)}=g1(V∇ˆUϕˆV,CˆX)+g1(ϕˆU,ˆV)η(ˆX),
for any ˆU,ˆV∈Γ(D) and ˆZ∈Γ(Dθ1⊕Dθ2).
Proof. For any ˆU,ˆV∈Γ(D) and ˆZ∈Γ(Dθ1⊕Dθ2) with using Eqs (2.2), (2.5), (2.14) and (3.2), we may write
g1(∇ˆUˆV,ˆZ)=g1(V∇ˆUϕˆV,αˆZ)+g1(TˆUϕˆV,βˆZ). |
On using the conformality of Ψ with Eqs (2.6) and (2.15), we get
g1(∇ˆUˆV,ˆZ)=g1(V∇ˆUϕˆV,αˆZ)−λ−2g2((∇Ψ∗)(ˆU,ϕˆV),Ψ∗βˆZ). |
On the other hand, using Eqs (2.2), (2.5) and (2.14) with conformality of Ψ, we finally have
g1(∇ˆUˆV,ˆX)=g1(V∇ˆUϕˆV,CˆX)−λ−2g2((∇Ψ∗)(ˆU,ϕˆV),Ψ∗BˆX)+g1(ϕˆU,ˆV)η(ˆX), |
from which we get the desired result.
In same manner, we can examine the geometry of leaves of Dθ1 as follows:
Theorem 4.5. Let Ψ be a QBSCξ⊥-submersion from Sasakian manifold (ˉQ1,ϕ,ξ,η,g1) onto a RM (ˉQ2,g2). Then slant distribution Dθ1 defines totally geodesic foliation on ˉQ1 if and only if
1λ2g2(∇ΨˆZΨ∗βP2ˆW,Ψ∗βP3ˆW)=cos2θ1g1(∇ˆZP2ˆW,ˆU)−g1(TˆZβαP2ˆW,ˆU)+g1(TˆZβαP2ˆW,ϕP1ˆU)+g1(TˆZβP2ˆW,αP3ˆU−1λ2g2((∇Ψ∗)(βP2ˆW,ˆZ),Ψ∗P3ˆU) | (4.3) |
and
λ−2{g2(∇ΨˆZΨ∗βαP2ˆW,Ψ∗ˆX)}−g1(αP2ˆW,ˆZ)η(ˆX)=1λ2g2((∇Ψ∗)(ˆZ,βαP2ˆW),Ψ∗ˆX))−1λ2g2((∇Ψ∗)(ˆZ,βαP2ˆW),Ψ∗BˆX))+cos2θ1g1(∇ˆZP2ˆW,ˆX)+g1(TˆZβαP2ˆW,CˆX)−g2(∇ΨˆZΨ∗βαP2ˆW,Ψ∗BˆX), | (4.4) |
for any ˆZ,ˆW∈Γ(Dθ1),ˆU∈Γ(D⊕Dθ2) and ˆX∈Γ(kerΨ∗)⊥.
Proof. By using Eqs (2.2), (2.5), (2.14) and (3.2), we get
g1(∇ˆZˆW,ˆU)=g1(∇ˆZβP2ˆW,ϕ(P1ˆU+P3ˆU))−g1(ϕ∇ˆZαP2ˆW,ˆU), |
for ˆZ,ˆW∈Γ(Dθ1) and ˆU∈Γ(D⊕Dθ2). Again using Eqs (2.2), (2.5), (2.10), (2.14) and (3.2) with Lemma 3.2, we may write
g1(∇ˆZˆW,ˆU)=cos2θ1g1(∇ˆZP2ˆW,ˆU)−g1(TˆZβαP2ˆW,ˆU)+g1(TˆZβαP2ˆW,ϕP1ˆU)+g1(TˆZβP2ˆW,αP3ˆU)+g1(H∇ˆZβP2ˆW,βP3ˆU). |
Since, Ψ is conformal, using Lemma 2.1 with Eqs (2.6) and (2.15), we have
g1(∇ˆZˆW,ˆU)=cos2θ1g1(∇ˆZP2ˆW,ˆU)−g1(TˆZβαP2ˆW,ˆU)+g1(TˆZβαP2ˆW,ϕP1ˆU)+g1(TˆZβP2ˆW,αP3ˆU)−1λ2g2(∇ΨˆZΨ∗βP2ˆW,Ψ∗βP3ˆW)−1λ2g2((∇Ψ∗)(βP2ˆW,ˆZ),Ψ∗P3ˆU). | (4.5) |
On the other hand, for ˆZ,ˆW∈Γ(Dθ1) and ˆX∈Γ(kerΨ∗)⊥, with using Eqs (2.2), (2.5), (2.14) and (3.2), we get
g1(∇ˆZˆW,ˆX)=g1(∇ˆZαP2ˆW,ϕˆX)+g1(∇ˆZβP2ˆW,ϕˆX). |
From Lemma 3.2 with Eqs (2.10) and (3.5), the above equation takes the form
g1(∇ˆZˆW,ˆX)=cos2θ1g1(∇ˆZP2ˆW,ˆX)−g1(H∇ˆZβαP2ˆW,ˆX)+g1(αP2ˆW,ˆZ)η(ˆX)+g1(TˆZβαP2ˆW,CˆX)+g1(H∇ˆZβαP2ˆW,BˆX). |
Since Ψ is conformal and from Eqs (2.6) and (2.15), we have
g1(∇ˆZˆW,ˆX)=cos2θ1g1(∇ˆZP2ˆW,ˆX)+g1(TˆZβαP2ˆW,CˆX)+g1(αP2ˆW,ˆZ)η(ˆX)+1λ2g2((∇Ψ∗)(βαP2ˆW,ˆZ),Ψ∗ˆX)−1λ2g2(∇ΨˆZΨ∗βαP2ˆW,Ψ∗ˆX)−1λ2g2((∇Ψ∗)(βαP2ˆW,ˆZ),Ψ∗BˆX)+1λ2g2(∇ΨˆZΨ∗βαP2ˆW,Ψ∗BˆX), |
from which we get the result.
In the following theorem, we study the necessary and sufficient conditions for slant distribution Dθ2 to be totally geodesic.
Theorem 4.6. Let Ψ:(ˉQ1,ϕ,ξ,η,g1)→(ˉQ2,g2) be a QBSCξ⊥-submersion, where (ˉQ1,ϕ,ξ,η,g1) a Sasakian manifold and (ˉQ2,g2) a RM. Then slant distribution Dθ2 defines totally geodesic foliation on ˉQ1 if and only if
1λ2g2(∇ΨˆZΨ∗βP2ˆW,Ψ∗βP3ˆW)=cos2θ1g1(∇ˆZP2ˆW,ˆV)−g1(TˆZβαP2ˆW,ˆV)+g1(TˆZβαP2ˆW,ϕP1ˆV)+g1(TˆZβP2ˆW,αP3ˆV−1λ2g2((∇Ψ∗)(βP2ˆW,ˆZ),Ψ∗P3ˆV) | (4.6) |
and
λ−2{g2(∇ΨˆZΨ∗βαP3ˆW,Ψ∗ˆY)−g2(∇ΨˆZΨ∗βαP3ˆW,Ψ∗BˆY)}=1λ2g2((∇Ψ∗)(ˆZ,βαP3ˆW),Ψ∗ˆY)−1λ2g2((∇Ψ∗)(ˆZ,βαP3ˆW),Ψ∗BˆY)+cos2θ2g1(∇ˆZP3ˆW,ˆY)+g1(TˆZβαP3ˆW,CˆY), | (4.7) |
for any ˆZ,ˆW∈Γ(Dθ2),ˆV∈Γ(D⊕Dθ1) and ˆY∈Γ(kerΨ∗)⊥.
Proof. The proof of above theorem is similar to the proof of Theorem 4.5.
Since, Ψ is QBSCξ⊥-submersion, its vertical and horizontal distribution are (kerΨ∗) and (kerΨ∗)⊥, respectively. Now, we examine the conditions under which distributions defines totally geodesic foliation on ˉQ1. With regards to the totally geodesicness of vertical distribution, we have
Theorem 4.7. Let Ψ:(ˉQ1,ϕ,ξ,η,g1)→(ˉQ2,g2) be a QBSCξ⊥-submersion, where (ˉQ1,ϕ,ξ,η,g1) a Sasakian manifold and (ˉQ2,g2) a RM. Then kerΨ∗ defines totally geodesic foliation on ˉQ1 if and only if
1λ2{g2(∇ΨˆUΨ∗βαP2ˆV+∇ΨˆUΨ∗βαP3ˆV,Ψ∗ˆX)}=g1(TˆUP1ˆV+cos2θ1TˆUP2ˆV+cos2θ2TˆUP3ˆV,ˆX)+g1(TˆUβˆV,CˆX)+1λ2{g2((∇Ψ∗)(ˆU,βαP2ˆV)−(∇Ψ∗)(ˆU,βαP3ˆV),Ψ∗ˆX)}+1λ2{g2(∇ΨˆUΨ∗βˆV−(∇Ψ∗)(ˆU,βˆV),Ψ∗BˆX)}−η(ˆX)g1(ϕˆU+αˆU,ˆV−P1ˆV), | (4.8) |
for any ˆU,ˆV∈Γ(kerΨ∗) and ˆX∈Γ(kerΨ∗)⊥.
Proof. For any ˆU,ˆV∈Γ(kerΨ∗) and ˆX∈Γ(kerΨ∗)⊥ with using Eqs (2.2), (2.5), (2.14) with decomposition (3.1), we get
g1(∇ˆUˆV,ˆX)=g1(∇ˆUϕP1ˆV,ϕˆX)+g1(∇ˆUϕP2ˆV,ϕˆX)+g1(∇ˆUϕP3ˆV,ϕˆX)+g1(αˆU,ˆV−P1ˆV)η(ˆX). |
On using Eq (3.2) with Lemmas 3.2 and 3.3, we have
g1(∇ˆUˆV,ˆX)=g1(∇ˆUP1ˆV,ˆX)+cos2θ1g1(∇ˆUP2ˆV,ˆX)+cos2θ2g1(∇ˆUP3ˆV,ˆX)+g1(∇ˆUβP2ˆV,ϕˆX)−g1(∇ˆUβαP2ˆV,ˆX)−g1(∇ˆUβαP3ˆV,ˆX)+g1(∇ˆUβP3ˆV,ϕˆX)−η(ˆX)g1(ϕˆU+αˆU,ˆV−P1ˆV). |
From Eqs (2.9), (2.10) and (3.5), we may yields
g1(∇ˆUˆV,ˆX)=g1(TˆUP1ˆV+cos2θ1TˆUP2ˆV+cos2θ2TˆUP3ˆV,ˆX)−g1(H∇ˆUβαP2ˆV+H∇ˆUβαP3ˆV,ˆX)+g1(TˆUβP2ˆV+TˆUβP3ˆV,CˆX)+g1(H∇ˆUβP2ˆV+H∇ˆUβP3ˆV,BˆX)−η(ˆX)g1(ϕˆU+αˆU,ˆV−P1ˆV). |
From decomposition (3.1), the above equation takes the form
g1(∇ˆUˆV,ˆX)=g1(TˆUP1ˆV+cos2θ1TˆUP2ˆV+cos2θ2TˆUP3ˆV,ˆX)+g1(TˆUβˆV,CˆX)−g1(H∇ˆUβαP2ˆV+H∇ˆUβαP3ˆV,ˆX)+g1(H∇ˆUβˆV,BˆX)−η(ˆX)g1(ϕˆU+αˆU,ˆV−P1ˆV). |
Using the conformality of Ψ with Eqs (2.6) and (2.15), we have
g1(∇ˆUˆV,ˆX)=g1(TˆUP1ˆV+cos2θ1TˆUP2ˆV+cos2θ2TˆUP3ˆV,ˆX)+g1(TˆUβˆV,CˆX)+1λ2{g2((∇Ψ∗)(ˆU,βαP2ˆV)−(∇Ψ∗)(ˆU,βαP3ˆV),Ψ∗ˆX)}−1λ2{g2(∇ΨˆUΨ∗βαP2ˆV+∇ΨˆUΨ∗βαP3ˆV,Ψ∗ˆX)}+1λ2{g2(∇ΨˆUΨ∗βˆV−(∇Ψ∗)(ˆU,βˆV),Ψ∗BˆX)}−η(ˆX)g1(ϕˆU+αˆU,ˆV−P1ˆV). |
This completes the proof of the theorem.
We can now talk about the geometry of leaves of horizontal distribution. The following theorem presents the necessary and sufficient condition under which horizontal distribution defines totally geodesic foliation on ˉQ1.
Theorem 4.8. Let Ψ be a QBSCξ⊥-submersion from Sasakian manifold (ˉQ1,ϕ,ξ,η,g1) onto a RM (ˉQ2,g2), . Then (kerΨ∗)⊥ defines totally geodesic foliation on ˉQ1 if and only if
−1λ2g2(∇ΨˆXΨ∗BˆY,Ψ∗βZ)+1λ2g2(∇ΨˆXΨ∗ˆY,Ψ∗βαP2Z)=cos2θ1{η(ˆY)g1(CˆX,P2Z)+g1(AˆXˆY,P2Z)}+cos2θ2{η(ˆY)g1(CˆX,P3Z)+AˆXˆY,P3Z}+g1(V∇ˆXCˆY,αP1Z)+g1(AˆXBˆY,αP1Z)+g1(AˆXCˆY,βZ)+η(ˆY)g1(ϕZ,ˆX)+1λ2g2(ˆX(lnλ)Ψ∗BˆY+BˆY(lnλ)Ψ∗ˆX−g1(ˆX,BˆY)Ψ∗(Glnλ),Ψ∗βZ)+1λ2g2(ˆX(lnλ)Ψ∗ˆY+ˆY(lnλ)Ψ∗ˆX−g1(ˆX,ˆY)Ψ∗(Glnλ),Ψ∗βαP2Z)+1λ2g2(ˆX(lnλ)Ψ∗ˆY+ˆY(lnλ)Ψ∗ˆX−g1(ˆX,ˆY)Ψ∗(Glnλ),Ψ∗βαP3Z)+1λ2g2(∇ΨˆXΨ∗ˆY,Ψ∗βαP3Z), | (4.9) |
for any ˆX,ˆY∈Γ(kerΨ∗)⊥ and ˆZ∈Γ(kerΨ∗).
Proof. For any ˆX,ˆY∈Γ(kerΨ∗)⊥ and ˆZ∈Γ(kerΨ∗) with using Eqs (2.2), (2.5) and (2.14) with decomposition (3.1), we get
g1(∇ˆXˆY,ˆZ)=g1(∇ˆXϕˆY,ϕP1ˆZ)+g1(∇ˆXϕˆY,ϕP2ˆZ)+g1(∇ˆXϕˆY,ϕP3ˆZ). |
From Eqs (2.11) and (3.2) with Lemma 3.2, we have
g1(∇ˆXˆY,ˆZ)=g1(V∇ˆXCˆY,αP1Z)+g1(AˆXBˆY,αP1Z)+g1(ϕ∇ˆXϕˆY,ϕαP2Z)+g1(∇ˆXCˆY,βP2Z)+g1(∇ˆXBˆY,βP2Z)+g1(ϕ∇ˆXϕˆY,ϕαP3Z)+g1(∇ˆXCˆY,βP3Z)+g1(∇ˆXBˆY,βP3Z)+η(ˆY)g1(ˆX,ϕZ). |
Since βP2Z+βP3Z=βZ and with using the Eqs (2.12) and (3.2), we get
g1(∇ˆXˆY,ˆZ)=g1(V∇ˆXCˆY,αP1Z)+g1(AˆXBˆY,αP1Z)+g1(AˆXCˆY,βZ)+η(ˆY)g1(ϕZ,ˆX)+g1(H∇ˆXBˆY,βZ)−g1(H∇ˆXˆY,βαP2Z)−g1(H∇ˆXˆY,βαP3Z)+cos2θ1{η(ˆY)g1(CˆX,P2Z)+g1(AˆXˆY,P2Z)}+cos2θ2{η(ˆY)g1(CˆX,P3Z)+g1(AˆXˆY,P3Z)}. |
From formula (2.6) and (2.15), we yields that
g1(∇ˆXˆY,ˆZ)=g1(V∇ˆXCˆY,αP1Z)+g1(AˆXBˆY,αP1Z)+g1(AˆXCˆY,βZ)+η(ˆY)g1(ϕZ,ˆX)+1λ2g2(∇ΨˆXΨ∗BˆY,Ψ∗βZ)−1λ2g2((∇Ψ∗)(ˆX,BˆY),Ψ∗βZ)−1λ2g2(∇ΨˆXΨ∗ˆY,Ψ∗βαP2Z)+1λ2g2((∇Ψ∗)(ˆX,ˆY),Ψ∗βαP2Z)−1λ2g2(∇ΨˆXΨ∗ˆY,Ψ∗βαP3Z)+1λ2g2((∇Ψ∗)(ˆX,ˆY),Ψ∗βαP3Z)+cos2θ1{η(ˆY)g1(CˆX,P2Z)+g1(AˆXˆY,P2Z)}+cos2θ2{η(ˆY)g1(CˆX,P3Z)+g1(AˆXˆY,P3Z)}. |
Since Ψ is conformal submersion, then we finally get
g1(∇ˆXˆY,ˆZ)=cos2θ1{η(ˆY)g1(CˆX,P2Z)+g1(AˆXˆY,P2Z)}+cos2θ2{η(ˆY)g1(CˆX,P3Z)+AˆXˆY,P3Z}+g1(V∇ˆXCˆY,αP1Z)+g1(AˆXBˆY,αP1Z)+g1(AˆXCˆY,βZ)+η(ˆY)g1(ϕZ,ˆX)+1λ2g2(ˆX(lnλ)Ψ∗BˆY+BˆY(lnλ)Ψ∗ˆX−g1(ˆX,BˆY)Ψ∗(Glnλ),Ψ∗βZ)+1λ2g2(ˆX(lnλ)Ψ∗ˆY+ˆY(lnλ)Ψ∗ˆX−g1(ˆX,ˆY)Ψ∗(Glnλ),Ψ∗βαP2Z)+1λ2g2(ˆX(lnλ)Ψ∗ˆY+ˆY(lnλ)Ψ∗ˆX−g1(ˆX,ˆY)Ψ∗(Glnλ),Ψ∗βαP3Z)+1λ2g2(∇ΨˆXΨ∗BˆY,Ψ∗βZ)−1λ2g2(∇ΨˆXΨ∗ˆY,Ψ∗βαP2Z)+1λ2g2(∇ΨˆXΨ∗ˆY,Ψ∗βαP3Z). |
This completes the proof of theorem.
We currently have a few prerequisites that must be met in order for QBSCξ⊥-submersion Ψ:ˉQ1→ˉQ2 to be a totally geodesic map. In this regard, we offer the subsequent finding.
Theorem 4.9. Let Ψ be a QBSCξ⊥-submersion from Sasakian manifold (ˉQ1,ϕ,ξ,η,g1) onto a RM (ˉQ2,g2). Then Ψ:(ˉQ1,ϕ,ξ,η,g1)→(ˉQ1,g2) is totally geodesic map if and only if
Ψ∗{cos2θ1∇ˆUP2ˆV+cos2θ2∇ˆUP3ˆV−∇ˆUβαP2ˆV−∇ˆUβαP3ˆV−g1(ϕˆU,P1ˆV)ξ}=Ψ∗{B(H∇ˆUβP2ˆV+H∇ˆUβP3ˆV+TˆUαP1ˆV)}+Ψ∗{β(TˆUβP2ˆV+TˆUβP3ˆV+V∇ˆUαP1ˆV)}, |
and
Ψ∗{cos2θ1∇ˆXP2ˆU+cos2θ2∇ˆXP3ˆU−∇ˆXβαP2ˆU−∇ˆXβαP3ˆU}=Ψ∗{B(AˆXαP1ˆU+H∇ˆXβP2ˆU+H∇ˆXβP3ˆU)}−g1(PˆX,ˆU)Ψ∗ξ+Ψ∗{β(V∇ˆXαP1ˆU+AˆXβP2ˆU+AˆXβP3ˆU)}, |
for any ˆU,ˆV∈Γ(kerΨ∗) and ˆX,ˆY∈Γ(kerΨ∗)⊥.
Proof. Now, using Eqs (2.1), (2.5), (2.14) and (2.15). we can write
(∇Ψ∗)(ˆU,ˆV)=Ψ∗{−η(∇ˆUˆV)ξ+ϕ∇ˆUϕˆV}, |
for any ˆU,ˆV∈Γ(kerΨ∗). From decomposition (3.1) and Eq (3.2), we have
(∇Ψ∗)(ˆU,ˆV)=Ψ∗{ϕ∇ˆUαP1ˆV+ϕ∇ˆUαP2ˆV+ϕ∇ˆUβP2ˆV+ϕ∇ˆUαP3ˆV+ϕ∇ˆUβP3ˆV−g1(ϕˆU,ˆV)ξ}. |
By using Eqs (2.9) and (2.10), the above equation takes the form
(∇Ψ∗)(ˆU,ˆV)=Ψ∗{ϕTˆUαP1ˆV+ϕV∇ˆUαP1ˆV}+Ψ∗(∇ˆUϕαP2ˆV)+Ψ∗(ϕTˆUβP2ˆV+ϕH∇ˆUβP2ˆV)+Ψ∗(∇ˆUϕαP2ˆV)+Ψ∗{ϕTˆUβP3ˆV+ϕH∇ˆUβP3ˆV+g1(ϕˆU,P1ˆV)ξ}. |
Since Ψ is conformal submersion, by using Lemmas 3.2 and 3.3 with Eq (3.2), we finally get
(∇Ψ∗)(ˆU,ˆV)=Ψ∗{B(H∇ˆUβP2ˆV+H∇ˆUβP3ˆV+TˆUαP1ˆV)+β(V∇ˆUαP1ˆV+TˆUαP2ˆV+TˆUαP3ˆV)}−Ψ∗{cos2θ1∇ˆUP2ˆV+cos2θ2∇ˆUP3ˆV−∇ˆUβαP2ˆV−∇ˆUβαP3ˆV−g1(ϕˆU,P1ˆV)ξ}. |
From this, the (i) part of theorem proved. On the other hand, for any ˆU∈Γ(kerΨ∗) and ˆX∈Γ(kerΨ∗)⊥ with using Eqs (2.1), (2.5), (2.14) and (2.15), we can write
(∇Ψ∗)(ˆX,ˆU)=Ψ∗(ϕ∇ˆXϕˆU−η(∇ˆXˆU)ξ). |
On using decomposition (3.1) with Eq (3.2), we have
(∇Ψ∗)(ˆX,ˆU)=Ψ∗{ϕ(∇ˆXαP1ˆU+∇ˆXαP2ˆU+∇ˆXβP2ˆU+∇ˆXαP3ˆU+∇ˆXβP3ˆU)}−g1(PˆX,ˆU)Ψ∗ξ. |
By taking account the fact from Eqs (2.11) and (2.12), we get
\begin{equation*} \begin{split} (\nabla {\Psi}_*)({\widehat{X}}, {\widehat{U}})& = {\Psi}_*\{\phi(\mathcal{A}_{\widehat{X}}\alpha {\mathfrak{P_1}}{\widehat{U}}+\mathcal{V}\nabla_{\widehat{X}}\alpha {\mathfrak{P_1}}{\widehat{U}}+\nabla_{\widehat{X}}\phi \alpha {\mathfrak{P_2}}{\widehat{U})}\\ &\; \; \; +\phi(\mathcal{H}\nabla_{\widehat{X}}\beta {\mathfrak{P_2}}{\widehat{U}}+\mathcal{A}_{\widehat{X}}\beta {\mathfrak{P_2}}{\widehat{U}})+\nabla_{\widehat{X}}\phi \alpha {\mathfrak{P_3}}{\widehat{U}}\\ &\; \; \; +\phi(\mathcal{H}\nabla_{\widehat{X}}\beta {\mathfrak{P_3}}{\widehat{U}}+\mathcal{A}_{\widehat{X}}\beta {\mathfrak{P_3}}{\widehat{U}})\}-g_1(P\widehat{X}, \widehat{U})\Psi_*\xi. \end{split} \end{equation*} |
Finally, from conformality of RS {\Psi} and Lemmas 3.2 and 3.3, we can write
\begin{equation*} \begin{split} (\nabla {\Psi}_*)({\widehat{X}}, {\widehat{U}})& = {\Psi}_*\{\beta(\mathcal{V}\nabla_{\widehat{X}}\alpha {\mathfrak{P_1}}{\widehat{U}}+\mathcal{A}_{\widehat{X}}\beta {\mathfrak{P_2}}{\widehat{U}}+\mathcal{{\mathfrak{P_1}}}_{\widehat{X}}\beta {\mathfrak{P_3}}{\widehat{U}})\}-g_1(P\widehat{X}, \widehat{U})\Psi_*\xi\\ &\; \; \; -{\Psi}_*(cos^2\theta_1\nabla_{\widehat{X}}{\mathfrak{P_2}}{\widehat{U}}+cos^2\theta_2\nabla_{\widehat{X}}{\mathfrak{P_3}}{\widehat{U}}-\nabla_{\widehat{X}}\beta\alpha {\mathfrak{P_2}}{\widehat{U}}-\nabla_{\widehat{X}}\beta\alpha {\mathfrak{P_3}}{\widehat{U}})\\ &\; \; \; +{\Psi}_*\{{\mathbb{B}}(\mathcal{A}_{\widehat{X}}\alpha {\mathfrak{P_1}}{\widehat{U}}+\mathcal{H}\nabla_{\widehat{X}}\beta {\mathfrak{P_2}}{\widehat{U}}+\mathcal{H}\nabla_{\widehat{X}}\beta {\mathfrak{P_3}}{\widehat{U}})\}. \end{split} \end{equation*} |
From which we obtain (ii) part of theorem. This completes the proof of theorem.
In this section, we recall the following result from [28] and discuss some decomposition theorems by using prior theorems. Let us suppose that g be a Riemannian metric on the manifold M = {\bar Q_1} \times {\bar Q_2} , then
({\rm{i}}) M = {\bar Q_1}\times_\lambda {\bar Q_2} is a locally product if and only if {{\bar Q_1}} and {{\bar Q_2}} are totally geodesic foliations,
({\rm{ii}}) a warped product {\bar Q_1}\times_{\lambda} {\bar Q_2} if and only if {\bar Q_1} is a totally geodesic foliation and {\bar Q_2} is a spherics foliation, i.e., it is umbilic and its mean curvature vector field is parallel,
({\rm{ii}}) M = {\bar Q_1}\times_\lambda {\bar Q_2} is a twisted product if and only if {{\bar Q_1}} is a totally geodesic foliation and {{\bar Q_2}} is a totally umbilic foliation.
The presence of three orthogonal complementary distributions \mathfrak{D} , \mathfrak{D^{\theta_1}} , and \mathfrak{{\mathfrak{D^{\theta_2}}}} , which satisfy some conditions of integrable and totally geodesic that we have stated previously, is ensured by the fact that {{\Psi}} : ({\bar Q_1}, \phi, \xi, \eta, g_1) \rightarrow ({\bar Q_2}, g_2) is \mathcal{QBSC}\; \xi^{\perp} -submersion. It makes sense to now look for the conditions in which the total space {\bar Q_1} converts into locally twisted product manifolds. Now, we are giving the following result.
Theorem 5.1. Let {\Psi} be a \mathcal{QBSC}\; \xi^{\perp} -submersion from Sasakian manifold (M, \phi, \xi, \eta, g_1) onto a RM (M_2, g_2) . Then {\bar Q_1} is locally twisted product of the form {\bar Q_1}{_{(ker {\Psi}_*)}}\times {\bar Q_1}{_{(ker {\Psi}_*)^\perp}} if and only if
\begin{equation} \begin{split} \frac{1}{\lambda^2}g_2((\nabla f_*)({\widehat{U}} , \beta {\widehat{V}}), f_*{\mathbb{B}}{\widehat{X}})& = g_1(\mathcal{T}_{\widehat{U}}\alpha {\widehat{V}}, {\mathbb{B}}{\widehat{X}})+g_1(\mathcal{{\widehat{V}}}\nabla_{\widehat{U}}\alpha {\widehat{V}}+\mathcal{T}_{\widehat{U}}\beta {\widehat{V}}, {\mathbb{C}}{\widehat{X}})\\ &\; \; \; +\frac{1}{\lambda^2}g_2(\nabla_U^{\Psi}\beta {\widehat{V}}, \Psi_* {\mathbb{B}}{\widehat{X}})-g_1({\widehat{U}}, {\widehat{V}})\eta ({\widehat{X}}) \end{split} \end{equation} | (5.1) |
and
\begin{equation} \begin{split} g({\widehat{X}}, {\widehat{Y}})H& = -{P}\mathcal{A}_{\widehat{X}}P {\widehat{Y}}-\alpha\nabla_{\widehat{X}}{\mathbb{C}}{\widehat{Y}}-\alpha\mathcal{A}_{\widehat{X}}{\mathbb{B}}{\widehat{Y}}-\phi {{\Psi}} _*(\nabla_{\widehat{X}}^{{{\Psi}} } {{\Psi}} _*{\mathbb{B}}{\widehat{Y}})+{\widehat{X}}(\ln\lambda)P{\mathbb{B}}{\widehat{Y}}\\ &\; \; \; +{\mathbb{B}}{\widehat{Y}}(\ln\lambda){\mathbb{C}}{\widehat{X}}-P(G\ln\lambda)g({\widehat{X}}, {\mathbb{B}}{\widehat{Y}}), \end{split} \end{equation} | (5.2) |
where H is a mean curvature vector and for any {\widehat{U}}, {\widehat{V}} \in \Gamma(ker {\Psi}_*) and {\widehat{X}}_1, {\widehat{X}}_2 \in \Gamma(ker {\Psi}_*)^\perp .
Proof. For any {\widehat{X}}_1, {\widehat{X}}_2 \in\Gamma(ker {\Psi}_*)^\perp and {\widehat{U}} \in \Gamma(ker {\Psi}_*) and using Eqs (2.2), (2.5), (2.11), (2.12) and (2.14), we have
\begin{equation*} \begin{split} g_1(\nabla_{\widehat{U}}{\widehat{V}}, {\widehat{X}})& = g_1(\mathcal{T}_{\widehat{U}}\alpha V, {\mathbb{B}}X)+g_1(\mathcal{V}\nabla_{\widehat{U}}\alpha V+\mathcal{T}_{\widehat{U}}\beta V, {\mathbb{C}}X)+g_1({\phi\widehat{U}}, V)\eta (X)-g_1(\mathcal{H}\nabla_{\widehat{U}}\beta V, {\mathbb{B}}X). \end{split} \end{equation*} |
From using formula (2.6), (2.15) and with conformality of RS {\Psi} , the above equation finally takes the form
\begin{equation*} \begin{split} g_1(\nabla_{{\widehat{U}}}{\widehat{V}}, {\widehat{X}})& = g_1(\mathcal{T}_{\widehat{U}}\alpha {\widehat{V}}, {\mathbb{B}}{\widehat{X}})+g_1(\mathcal{{\widehat{V}}}\nabla_{\widehat{U}}\alpha {\widehat{V}}+\mathcal{T}_{\widehat{U}}\beta {\widehat{V}}, {\mathbb{C}}{\widehat{X}})+g_1({\phi\widehat{U}}, V)\eta (X)\\ &\; \; \; -\frac{1}{\lambda^2}g_2((\nabla f_*)({\widehat{U}} , \beta {\widehat{V}}), f_*{\mathbb{B}}{\widehat{X}})+\frac{1}{\lambda^2}g_2(\nabla_U^{\Psi}\beta {\widehat{V}}, \Psi_* {\mathbb{B}}{\widehat{X}}). \end{split} \end{equation*} |
It follows that the Eq (5.1) satisfies if and only if {\bar Q_1}{_{(ker {\Psi}_*)}} is totally geodesic. On the other hand, for {\widehat{U}}\in \Gamma(ker{\Psi}_*) and \widetilde{X}, {\widehat{Y}} \in \Gamma(ker {\Psi}_*)^\perp with using Eqs (2.2), (2.5), (2.14) and (3.5), we get
\begin{equation*} g_1(\nabla_{\widehat{X}}{\widehat{Y}}, {{{\widehat{U}}}}) = g_1(\nabla_{\widehat{X}}P {\widehat{Y}}, \phi {{{\widehat{U}}}})+g_1(\mathcal{A}_{\widehat{X}}{\mathbb{B}}{\widehat{Y}}, \alpha {{{\widehat{U}}}})+g_1(\mathcal{H}\nabla_{\widehat{X}}{\mathbb{B}}{\widehat{Y}}, \beta {{{\widehat{U}}}}). \end{equation*} |
By using the Eq (2.15) with definition of conformality of {{{\Psi}} } , we deduce that
\begin{equation*} \begin{split} g_1(\nabla_{\widehat{X}}{\widehat{Y}}, {{{\widehat{U}}}})& = -\frac{1}{\lambda^2}g_2((\nabla {{\Psi}} _*)({\widehat{X}}, {\mathbb{B}}{\widehat{Y}}), {{\Psi}} _*\beta {{{\widehat{U}}}})+\frac{1}{\lambda^2}g_2(\nabla_{\widehat{X}}^{{{\Psi}} }{{\Psi}} _*{\mathbb{B}}{\widehat{Y}}, {{\Psi}} _*\beta {{{\widehat{U}}}})\\ &\; \; \; +g_1(\nabla_{\widehat{X}}P {\widehat{Y}}, \phi {{{\widehat{U}}}})+g_1(\mathcal{A}_{\widehat{X}}{\mathbb{B}}{\widehat{Y}}, \alpha {{{\widehat{U}}}}). \end{split} \end{equation*} |
Considering the (i) part of Lemma 2.1, above equation turns in to
\begin{equation*} \begin{split} g_1(\nabla_{\widehat{X}}{\widehat{Y}}, {{{\widehat{U}}}})& = \frac{1}{\lambda^2}g_2(\nabla_{\widehat{X}}^{{{\Psi}} }{{\Psi}} _*{\mathbb{B}}{\widehat{Y}}, {{\Psi}} _*\beta {{{\widehat{U}}}})+g_1(\nabla_{\widehat{X}}{\mathbb{C}}{\widehat{Y}}, \phi {{{\widehat{U}}}})+g_1(\mathcal{A}_{\widehat{X}}{\mathbb{B}}{\widehat{Y}}, \alpha {{{\widehat{U}}}})\\ &\; \; \; -g_1(G\ln\lambda, {\widehat{X}})g_1({\mathbb{B}}{\widehat{Y}}, \beta {{{\widehat{U}}}})-g_1(G\ln\lambda, {\mathbb{B}}{\widehat{Y}})g_1({\widehat{X}}, \beta {{{\widehat{U}}}})\\ &\; \; \; +g_1(G\ln\lambda, \beta {{{\widehat{U}}}})g_1({\widehat{X}}, {\mathbb{B}}{\widehat{Y}}). \end{split} \end{equation*} |
By direct calculation, finally we get
\begin{equation*} \begin{split} g_1({\widehat{X}}, {\widehat{Y}})H& = -P\mathcal{A}_{\widehat{X}}P {\widehat{Y}}-\alpha\nabla_{\widehat{X}}{\mathbb{C}}{\widehat{Y}}-\alpha\mathcal{A}_{\widehat{X}}{\mathbb{B}}{\widehat{Y}}-\phi {{\Psi}} _*(\nabla_{\widehat{X}}^{{{\Psi}}} {{\Psi}} _*{\mathbb{B}}{\widehat{Y}})+{\widehat{X}}(\ln\lambda)P{\mathbb{B}}{\widehat{Y}}\\ &\; \; \; +{\mathbb{B}}{\widehat{Y}}(\ln\lambda){\mathbb{C}}{\widehat{X}}-P(G\ln\lambda)g_1({\widehat{X}}, {\mathbb{B}}{\widehat{Y}}). \end{split} \end{equation*} |
From the above equation we conclude that {\bar Q_1}{_{(ker {\Psi}_*)^\perp}} is totally umbilical if and only if Eq (5.2) satisfied.
Y. Ohnita established J -pluriharminicity from a almost hermitian manifold in [22]. In this section, we extend the concept of \phi -pluriharmonicity to almost contact metric manifolds.
Let {\Psi} be a \mathcal{QBSC}\; \xi^{\perp} -submersion from Sasakian manifold ({\bar Q_1}, \phi, \xi, \eta, g_1) onto a RM ({\bar Q_2}, g_2) with slant angles \theta_1 and \theta_2 . Then \mathcal{QBSC} submersion is \phi -pluriharmonic, {\mathfrak{D}} - \phi -pluriharmonic, \mathfrak{D^{\theta_i}} - \phi -pluriharmonic, \mathfrak{(D}-\mathfrak{D^{\theta_i})} - \phi pluriharmonic (where i = 1, 2 ), ker \Psi_* - \phi -pluriharmonic, (ker \Psi_*)^\perp - \phi -pluriharmonic and ((ker \Psi_*)^\perp-ker \Psi_*) - \phi -pluriharmonic if
\begin{equation} (\nabla \Psi_*)({\widehat{U}}, {\widehat{V}})+(\nabla \Psi_*)(\phi {\widehat{U}}, \phi {\widehat{V}}) = 0, \end{equation} | (6.1) |
for any {\widehat{U}}, {\widehat{V}} \in \Gamma({\mathfrak{D}}) , for any {\widehat{U}}, {\widehat{V}} \in \Gamma(\mathfrak{D^{\theta_i)}} , for any {\widehat{U}}\in \Gamma({\mathfrak{D}}), {\widehat{V}} \in \Gamma(\mathfrak{D^{\theta_i})} (where i = 1, 2 ), for any {\widehat{U}}, {\widehat{V}} \in \Gamma(ker \Psi_*) , for any {\widehat{U}}, {\widehat{V}} \in \Gamma(ker \Psi_*)^\perp and for any {\widehat{U}}\in \Gamma(ker \Psi_*)^\perp, {\widehat{V}} \in \Gamma(ker \Psi_*) .
Theorem 6.1. Let \Psi be a \mathcal{QBSC}\; \xi^{\perp} -submersion from Sasakian manifold ({\bar Q_1}, \phi, \xi, \eta, g_1) onto a RM ({\bar Q_2}, g_2) with slant angles \theta_1 and \theta_2 . Suppose that \Psi is {\mathfrak{D_{\theta_1}}} - \phi -pluriharmonic. Then {\mathfrak{D_{\theta_1}}} defines totally geodesic foliation {\bar Q_1} if and only if
\begin{equation*} \begin{split} &\Psi_*(\beta\mathcal{T}_{\alpha {\widehat{U}}}\beta\alpha {\widehat{V}}+{\mathbb{B}}\mathcal{H}\nabla_{\alpha {\widehat{U}}}\beta\alpha {\widehat{V}})-\Psi_*(\mathcal{A}_{\beta {\widehat{U}}}\alpha {\widehat{V}}+\mathcal{H}\nabla_{\alpha {\widehat{U}}}\beta {\widehat{V}})\\ = &\operatorname{cos^2}\theta_1 \Psi_*({\mathbb{B}}\mathcal{T}_{\alpha {\widehat{U}}}{\widehat{V}}+\beta\mathcal{V}\nabla_{\alpha {\widehat{U}}}{\widehat{V}})+\nabla_{\alpha {\widehat{U}}}^{\Psi}\Psi_*\phi {\widehat{V}}+g_1(\alpha \widehat{U}, \alpha \widehat{V})\Psi_*\xi\\ &-\beta {\widehat{U}}(\ln\lambda) \Psi_*\beta {\widehat{V}}-\beta {\widehat{V}}(\ln\lambda) \Psi_*\beta {\widehat{U}}+g_1(\beta {\widehat{U}}, \beta {\widehat{V}}) \Psi_*(G\ln\lambda), \end{split} \end{equation*} |
for any {{\widehat{U}}}, {\widehat{V}} \in\Gamma({\mathfrak{D_{\theta_1}}}) .
Proof. For any {{\widehat{U}}}, {\widehat{V}} \in\Gamma({\mathfrak{D_{\theta_1}}}) and since, \Psi is {\mathfrak{D_{\theta_1}}} - \phi -pluriharmonic, then by using Eqs (2.9) and (2.15), we have
\begin{equation*} \begin{split} 0& = (\nabla \Psi_*)({\widehat{U}}, {\widehat{V}})+(\nabla \Psi_*)(\phi {\widehat{U}}, \phi {\widehat{V}}), \\ \Psi_*(\nabla_{\widehat{U}}{\widehat{V}})& = - \Psi_*(\nabla_{\phi {\widehat{U}}}\phi {\widehat{V}})+\nabla_{\phi {\widehat{U}}}^{\Psi}{\Psi}_*(\phi {\widehat{V}})\\ & = -\Psi_*(\mathcal{A}_{\beta {\widehat{U}}}\alpha {\widehat{V}}+\mathcal{V}\nabla_{\beta {\widehat{U}}}\alpha {\widehat{V}}+\mathcal{T}_{\alpha {\widehat{U}}}\beta {\widehat{V}}+\mathcal{H}\nabla_{\alpha {\widehat{U}}}\beta {\widehat{V}})\\ &\; \; \; +(\nabla \Psi_*)(\beta {\widehat{U}}, \beta {\widehat{V}})-\nabla_{\beta {\widehat{U}}}^{\Psi}\Psi_*\beta {\widehat{V}}+\nabla_{\phi {\widehat{U}}}^{\Psi}\Psi_*\phi {\widehat{V}}\\ &\; \; \; +\Psi_*(\phi\nabla_{\alpha {\widehat{U}}}\phi \alpha {\widehat{V}}-\eta(\nabla_{\alpha {\widehat{U}}}\alpha {\widehat{V}})\xi). \end{split} \end{equation*} |
On using Eqs (3.2) and (3.5) with Lemmas 2.1 and 3.2, the above equation finally takes the form
\begin{equation*} \begin{split} \Psi_*(\nabla_{\widehat{U}}V)& = -\operatorname{cos^2}\theta_1 \Psi_*(P\mathcal{T}_{\alpha {\widehat{U}}}{\widehat{V}}+{\mathbb{B}}\mathcal{T}_{\alpha {\widehat{U}}}{\widehat{V}}+\alpha\mathcal{V}\nabla_{\alpha {\widehat{U}}}{\widehat{V}}+\beta\mathcal{V}\nabla_{\alpha {\widehat{U}}}{\widehat{V}})\\ &\; \; \; + \Psi_*(\alpha\mathcal{T}_{\alpha {\widehat{U}}}\beta\alpha {\widehat{V}}+\beta\mathcal{T}_{\alpha {\widehat{U}}}\beta\alpha {\widehat{V}}+P\mathcal{H}\nabla_{\alpha {\widehat{U}}}\beta\alpha {\widehat{V}}+{\mathbb{B}}\mathcal{H}\nabla_{\alpha {\widehat{U}}}\beta\alpha {\widehat{V}})\\ &\; \; \; - \Psi_*(\mathcal{A}_{\beta {\widehat{U}}}\alpha {\widehat{V}}+\mathcal{V}\nabla_{\beta {\widehat{U}}}\alpha {\widehat{V}}+\mathcal{T}_{\alpha {\widehat{U}}}\beta {\widehat{V}}+\mathcal{H}\nabla_{\alpha {\widehat{U}}}\beta {\widehat{V}})\\ &\; \; \; +\beta {\widehat{U}}(\ln\lambda) \Psi_*\beta {\widehat{V}}+\beta {\widehat{V}}(\ln\lambda) \Psi_*\beta {\widehat{U}}-g_M(\beta {\widehat{U}}, \beta {\widehat{V}}) \Psi_*(grad\ln\lambda)\\ &\; \; \; + g_1(\alpha \widehat{U}, \alpha \widehat{V})\Psi_*\xi -\nabla_{\beta {\widehat{U}}}^{\Psi}\Psi_*\beta {\widehat{V}}+\nabla_{\phi {\widehat{U}}}^{\Psi}\Psi_*\phi {\widehat{V}} \end{split} \end{equation*} |
from which we get the desired result.
Theorem 6.2. Let \vec f be a \mathcal{QBSC}\; \xi^{\perp} -submersion from Sasakian manifold ({\bar Q_1}, \phi, \xi, \eta, g_1) onto a RM ({\bar Q_2}, g_2) with slant angles \theta_1 and \theta_2 . Suppose that \Psi is {\mathfrak{D_{\theta_2}}} - \phi -pluriharmonic. Then {\mathfrak{D_{\theta_2}}} defines totally geodesic foliation {\bar Q_1} if and only if
\begin{equation*} \begin{split} & \Psi_*(\beta\mathcal{T}_{\alpha {\widehat{Z}}}\beta\alpha {\widehat{W}}+{\mathbb{B}}\mathcal{H}\nabla_{\alpha {\widehat{Z}}}\beta\alpha {\widehat{W}})- \Psi_*(\mathcal{A}_{\beta {\widehat{Z}}}\alpha {\widehat{W}}+\mathcal{H}\nabla_{\alpha {\widehat{Z}}}\beta {\widehat{W}})\\ = &\operatorname{cos^2}\theta_2 \Psi_*({\mathbb{B}}\mathcal{T}_{\alpha {\widehat{Z}}}{\widehat{W}}+\beta\mathcal{{\widehat{W}}}\nabla_{\alpha {\widehat{Z}}}{\widehat{W}})+\nabla_{\alpha {\widehat{Z}}}^{\Psi}\Psi_*\phi {\widehat{W}}+g_1(\alpha \widehat{Z}, \alpha \widehat{W})\Psi_*\xi\\ &-\beta {\widehat{Z}}(\ln\lambda) \Psi_*\beta {\widehat{W}}-\beta {\widehat{W}}(\ln\lambda) \Psi_*\beta {\widehat{Z}}+g_M(\beta {\widehat{Z}}, \beta {\widehat{W}}) \Psi_*(grad\ln\lambda), \end{split} \end{equation*} |
for any {\widehat{Z}}, {\widehat{W}} \in\Gamma({\mathfrak{D_{\theta_2}}}) .
Proof. The proof of the theorem is similar to the proof of Theorem 6.1.
Theorem 6.3. Let \vec f be a \mathcal{QBSC}\; \xi^{\perp} -submersion from Sasakian manifold ({\bar Q_1}, \phi, \xi, \eta, g_1) onto a RM ({\bar Q_2}, g_2) with slant angles \theta_1 and \theta_2 . Suppose that \Psi is ((ker \Psi_*)^\perp-ker \Psi_*) - \phi -pluriharmonic. Then the following assertion are equivalent.
(i) The horizontal distribution (ker \Psi_*)^\perp defines totally geodesic foliation on {\bar Q_1} .
(ii) (cos^2\theta_1+cos^2\theta_2){\Psi}_*\{{\mathbb{B}}\mathcal{T}_{{\mathbb{C}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+\beta\mathcal{V}\nabla_{{\mathbb{C}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+{\mathbb{B}}\mathcal{A}_{{\mathbb{B}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+\beta\mathcal{V}\nabla_{{\mathbb{B}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}\}
+{\Psi}_*\{\beta\mathcal{A}_{{\mathbb{B}}{\widehat{X}}}\beta\alpha {\mathfrak{P_2}}{\widehat{U}}+\beta\mathcal{A}_{{\mathbb{B}}{\widehat{X}}}\beta\alpha {\mathfrak{P_3}}{\widehat{U}}-\mathcal{H}\nabla_{{\mathbb{C}}{\widehat{X}}}\beta {\widehat{U}}\} +\nabla_{{\mathbb{B}}{\widehat{X}}}^{\Psi}{\Psi}_*\beta\alpha {\mathfrak{P_2}}{\widehat{U}}+\nabla_{{\mathbb{B}}{\widehat{X}}}^{\Psi}{\Psi}_*\beta\alpha {\mathfrak{P_3}}{\widehat{U}}
= {\Psi}_*\{{\mathbb{B}}\mathcal{T}_{{\mathbb{C}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+\beta\mathcal{V}\nabla_{{\mathbb{C}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+{\mathbb{B}}\mathcal{A}_{{\mathbb{B}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+\beta\mathcal{H}{\nabla_{{\mathbb{B}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}}\}
-{\Psi}_*\{\beta\mathcal{T}_{{\mathbb{C}}{\widehat{X}}}\beta\alpha {\mathfrak{P_2}}{\widehat{U}}+{\mathbb{B}}\mathcal{H}\nabla_{{\mathbb{C}}{\widehat{X}}}\beta\alpha {\mathfrak{P_2}}{\widehat{U}}+\beta\mathcal{T}_{{\mathbb{C}}{\widehat{X}}}\beta\alpha {\mathfrak{P_3}}{\widehat{U}}+{\mathbb{B}}\mathcal{H}\nabla_{{\mathbb{C}}{\widehat{X}}}\beta\alpha {\mathfrak{P_3}}{\widehat{U}}\}
+{\mathbb{B}}{\widehat{X}}(\ln\lambda){\Psi}_*\beta\alpha {\mathfrak{P_2}}{\widehat{U}}+\beta\alpha {\mathfrak{P_2}}{\widehat{U}}(\ln\lambda){\Psi}_*{\mathbb{B}}{\widehat{X}}-g_1({\mathbb{B}}{\widehat{X}}, \beta\alpha {\mathfrak{P_2}}{\widehat{U}}){\Psi}_*(grad\ln\lambda)
+{\mathbb{B}}{\widehat{X}}(\ln\lambda){\Psi}_*\beta\alpha {\mathfrak{P_3}}{\widehat{U}}+\beta\alpha {\mathfrak{P_3}}{\widehat{U}}(\ln\lambda){\Psi}_*{\mathbb{B}}{\widehat{X}}-g_1({\mathbb{B}}{\widehat{X}}, \beta\alpha {\mathfrak{P_3}}{\widehat{U}}){\Psi}_*(grad\ln\lambda)
+{\Psi}_*(\nabla_{\widehat{X}}{\widehat{U}})+\nabla_{\phi {\widehat{X}}}^{\Psi}{\Psi}_*\beta {\widehat{U}} +g_1(P\widehat{X}, \alpha\widehat{U})\Psi_* \xi,
for any {\widehat{X}} \in \Gamma(ker \Psi_*)^\perp and {\widehat{U}} \in \Gamma(ker \Psi_*).
Proof. For any {\widehat{X}} \in \Gamma(ker \Psi_*)^\perp and {{{\widehat{U}}}} \in \Gamma(ker \Psi_*) , since \Psi is ((ker \Psi_*)^\perp-ker \Psi_*) - \phi -pluriharmonic, then by using (2.15), (3.2) and (3.5), we get
\begin{equation*} {\Psi}_*(\nabla_{{\mathbb{B}}{\widehat{X}}}\beta {\widehat{U}}) = -{\Psi}_*(\nabla_{{\mathbb{C}}{\widehat{X}}}\alpha {\widehat{U}}+\nabla_{{\mathbb{C}}{\widehat{X}}}\beta {\widehat{U}}+\nabla_{{\mathbb{B}}{\widehat{X}}}\alpha {\widehat{U}})+{\Psi}_*(\nabla_{\widehat{X}}{\widehat{U}})+\nabla_{\phi {\widehat{X}}}^{\Psi}{\Psi}_*\beta {\widehat{U}}. \end{equation*} |
Taking account the fact from (2.1) and (2.10), we have
\begin{equation*} \begin{split}{\Psi}_*(\nabla_{{\mathbb{B}}{\widehat{X}}}\beta {\widehat{U}})& = -{\Psi}_*(\mathcal{T}_{{\mathbb{C}}{\widehat{X}}}\beta {\widehat{U}}+\mathcal{H}\nabla_{{\mathbb{C}}{\widehat{X}}}\beta {\widehat{U}})+{\Psi}_*(\nabla_{\widehat{X}}{\widehat{U}})+\nabla_{\phi {\widehat{X}}}^{\Psi}{\Psi}_*\beta {\widehat{U}}\\ &\; \; \; +{\Psi}_*\{\phi\nabla_{{\mathbb{C}}{\widehat{X}}}\phi\alpha {\widehat{U}}-\eta(\nabla_{P\widehat{X}}\alpha \widehat{U})\xi\}\\ &\; \; \; +{\Psi}_*\{\phi\nabla_{{\mathbb{B}}{\widehat{X}}}\phi\alpha {\widehat{U}}-\eta(\nabla_{{\mathbb{B}}\widehat{X}}\alpha \widehat{U})\xi\}. \end{split} \end{equation*} |
Now on using decomposition (3.1), Lemmas 3.2 and 3.3 with Eq (3.2), we may yields
\begin{equation*} \begin{split} {\Psi}_*(\nabla_{{\mathbb{B}}{\widehat{X}}}\beta {\widehat{U}})& = {\Psi}_*\{\phi\nabla_{{\mathbb{C}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}-\cos^2\theta_1\phi\nabla_{{\mathbb{C}}{\widehat{X}}}\alpha {\widehat{U}}-\cos^2\theta_2\phi\nabla_{{\mathbb{C}}{\widehat{X}}}\alpha {\widehat{U}}+g_1(P\widehat{X}, \alpha\widetilde{U})\xi\\ &\; \; \; +{\Psi}_*\{\phi\nabla_{{\mathbb{B}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}-\cos^2\theta_1\phi\nabla_{{\mathbb{B}}{\widehat{X}}}\alpha {\widehat{U}}-\cos^2\theta_2\phi\nabla_{{\mathbb{B}}{\widehat{X}}}\alpha {\widehat{U}} +g_1({\mathbb{B}}\widehat{X}, \alpha\widetilde{U})\xi\\ &\; \; \; +{\Psi}_*\{\phi\nabla_{{\mathbb{C}}{\widehat{X}}}\beta\alpha {\mathfrak{P_2}}{\widehat{U}}+\phi\nabla_{{\mathbb{C}}{\widehat{X}}}\beta\alpha {\mathfrak{P_3}}{\widehat{U}}+\phi\nabla_{{\mathbb{B}}{\widehat{X}}}\beta\alpha {\mathfrak{P_2}}{\widehat{U}}+\phi\nabla_{{\mathbb{B}}{\widehat{X}}}\beta\alpha {\mathfrak{P_3}}{\widehat{U}}\}\\ &\; \; \; -{\Psi}_*(\mathcal{H}\nabla_{{\mathbb{C}}{\widehat{X}}}\beta {\widehat{U}})+{\Psi}_*(\nabla_{\widehat{X}}{\widehat{U}})+\nabla_{\phi {\widehat{X}}}^{\Psi}{\Psi}_*\beta {\widehat{U}}. \end{split} \end{equation*} |
From Eqs (2.9)–(2.12) and after simple calculation, we may write
\begin{equation*} \begin{split} {\Psi}_*(\nabla_{{\mathbb{B}}{\widehat{X}}}\beta {\widehat{U}})& = -(cos^2\theta_1+cos^2\theta_2){\Psi}_*\{{\mathbb{B}}\mathcal{T}_{{\mathbb{C}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+\beta\mathcal{V}\nabla_{{\mathbb{C}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+{\mathbb{B}}\mathcal{A}_{{\mathbb{B}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}\\ &\; \; \; +\beta\mathcal{V}\nabla_{{\mathbb{B}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}\} -{\Psi}_*\{\beta\mathcal{A}_{{\mathbb{B}}{\widehat{X}}}\beta\alpha {\mathfrak{P_2}}{\widehat{U}}+\beta\mathcal{A}_{{\mathbb{B}}{\widehat{X}}}\beta\alpha {\mathfrak{P_3}}{\widehat{U}}-\mathcal{H}\nabla_{{\mathbb{C}}{\widehat{X}}}\beta {\widehat{U}}\}\\ &\; \; \; +{\Psi}_*\{{\mathbb{B}}\mathcal{T}_{{\mathbb{C}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+\beta\mathcal{V}\nabla_{{\mathbb{C}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+{\mathbb{B}}\mathcal{A}_{{\mathbb{B}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+\beta\mathcal{H}{\nabla_{{\mathbb{B}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}}\}\\ &\; \; \; -{\Psi}_*\{\beta\mathcal{T}_{{\mathbb{C}}{\widehat{X}}}\beta\alpha {\mathfrak{P_2}}{\widehat{U}}+{\mathbb{B}}\mathcal{H}\nabla_{{\mathbb{C}}{\widehat{X}}}\beta\alpha {\mathfrak{P_2}}{\widehat{U}}+\beta\mathcal{T}_{{\mathbb{C}}{\widehat{X}}}\beta\alpha {\mathfrak{P_3}}{\widehat{U}}+{\mathbb{B}}\mathcal{H}\nabla_{{\mathbb{C}}{\widehat{X}}}\beta\alpha {\mathfrak{P_3}}{\widehat{U}}\}\\ &\; \; \; -{\Psi}_*({\mathbb{B}}\mathcal{H}\nabla_{{\mathbb{B}}{\widehat{X}}}\beta\alpha {\mathfrak{P_2}}{\widehat{U}}+{\mathbb{B}}\mathcal{H}\nabla_{{\mathbb{B}}{\widehat{X}}}\beta\alpha {\mathfrak{P_2}}{\widehat{U}})+{\Psi}_*(\nabla_{\widehat{X}}{\widehat{U}})\\ &\; \; \; +\nabla_{\phi {\widehat{X}}}^{\Psi}{\Psi}_*\beta {\widehat{U}} +g_1(P\widehat{X}, \alpha\widehat{U})\Psi_* \xi. \end{split} \end{equation*} |
Since \Psi is conformal Riemannian submersion, the by using Eq (2.15) and from Lemma 2.1, we finally have
\begin{equation*} \begin{split} &{\Psi}_*(\nabla_{{\mathbb{B}}{\widehat{X}}}\beta {\widehat{U}})\\ = &-(cos^2\theta_1+cos^2\theta_2){\Psi}_*\{{\mathbb{B}}\mathcal{T}_{{\mathbb{C}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+\beta\mathcal{V}\nabla_{{\mathbb{C}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+{\mathbb{B}}\mathcal{A}_{{\mathbb{B}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+\beta\mathcal{V}\nabla_{{\mathbb{B}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}\}\\ &\; \; \; +{\Psi}_*\{{\mathbb{B}}\mathcal{T}_{{\mathbb{C}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+\beta\mathcal{V}\nabla_{{\mathbb{C}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+{\mathbb{B}}\mathcal{A}_{{\mathbb{B}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}+\beta\mathcal{H}{\nabla_{{\mathbb{B}}{\widehat{X}}}\alpha {\mathfrak{P_1}}{\widehat{U}}}\}\\ &\; \; \; -{\Psi}_*\{\beta\mathcal{T}_{{\mathbb{C}}{\widehat{X}}}\beta\alpha {\mathfrak{P_2}}{\widehat{U}}+{\mathbb{B}}\mathcal{H}\nabla_{{\mathbb{C}}{\widehat{X}}}\beta\alpha {\mathfrak{P_2}}{\widehat{U}}+\beta\mathcal{T}_{{\mathbb{C}}{\widehat{X}}}\beta\alpha {\mathfrak{P_3}}{\widehat{U}}+{\mathbb{B}}\mathcal{H}\nabla_{{\mathbb{C}}{\widehat{X}}}\beta\alpha {\mathfrak{P_3}}{\widehat{U}}\}\\ &\; \; \; +{\mathbb{B}}{\widehat{X}}(\ln\lambda){\Psi}_*\beta\alpha {\mathfrak{P_2}}{\widehat{U}}+\beta\alpha {\mathfrak{P_2}}{\widehat{U}}(\ln\lambda){\Psi}_*{\mathbb{B}}{\widehat{X}}-g_1({\mathbb{B}}{\widehat{X}}, \beta\alpha {\mathfrak{P_2}}{\widehat{U}}){\Psi}_*(grad\ln\lambda)\\ &\; \; \; +{\mathbb{B}}{\widehat{X}}(\ln\lambda){\Psi}_*\beta\alpha {\mathfrak{P_3}}{\widehat{U}}+\beta\alpha {\mathfrak{P_3}}{\widehat{U}}(\ln\lambda){\Psi}_*{\mathbb{B}}{\widehat{X}}-g_1({\mathbb{B}}{\widehat{X}}, \beta\alpha {\mathfrak{P_3}}{\widehat{U}}){\Psi}_*(grad\ln\lambda)\\ &\; \; \; -{\Psi}_*\{\beta\mathcal{A}_{{\mathbb{B}}{\widehat{X}}}\beta\alpha {\mathfrak{P_2}}{\widehat{U}}+\beta\mathcal{A}_{{\mathbb{B}}{\widehat{X}}}\beta\alpha {\mathfrak{P_3}}{\widehat{U}}-\mathcal{H}\nabla_{{\mathbb{C}}{\widehat{X}}}\beta {\widehat{U}}\}+g_1(P\widehat{X}, \alpha\widehat{U})\Psi_* \xi.\\ &\; \; \; +{\Psi}_*(\nabla_{\widehat{X}}{\widehat{U}})+\nabla_{\phi {\widehat{X}}}^{\Psi}{\Psi}_*\beta {\widehat{U}} -\nabla_{{\mathbb{B}}{\widehat{X}}}^{\Psi}{\Psi}_*\beta\alpha {\mathfrak{P_2}}{\widehat{U}}-\nabla_{{\mathbb{B}}{\widehat{X}}}^{\Psi}{\Psi}_*\beta\alpha {\mathfrak{P_3}}{\widehat{U}}, \end{split} \end{equation*} |
which completes the proof of theorem.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors extend their appreciation to the Deanship of Scientific research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia, for funding this research work through Grant No. 221412008.
The authors declare that there is no conflict of interest.
[1] |
M. Akyol, Y. Gunduzalp, Hemi-slant submersions from almost product Riemannian manifolds, Gulf Journal of Mathematics, 4 (2016), 15–27. http://dx.doi.org/10.56947/gjom.v4i3.70 doi: 10.56947/gjom.v4i3.70
![]() |
[2] |
M. Akyol, Conformal semi-slant submersions, Int. J. Geom. Methods M., 14 (2017), 1750114. http://dx.doi.org/10.1142/S0219887817501146 doi: 10.1142/S0219887817501146
![]() |
[3] |
M. Akyol, B. Sahin, Conformal slant submersions, Hacet. J. Math. Stat., 48 (2019), 28–44. http://dx.doi.org/10.15672/HJMS.2017.506 doi: 10.15672/HJMS.2017.506
![]() |
[4] |
M. Akyol, B. Sahin, Conformal anti-invariant submersions from almost Hermitian manifolds, Turk. J. Math., 40 (2016), 43–70. http://dx.doi.org/10.3906/mat-1408-20 doi: 10.3906/mat-1408-20
![]() |
[5] |
M. Akyol, B. Sahin, Conformal semi-invariant submersions, Commun. Contemp. Math., 19 (2017), 1650011. http://dx.doi.org/10.1142/S0219199716500115 doi: 10.1142/S0219199716500115
![]() |
[6] |
M. Akyol, B. Sahin, Conformal anti-invariant submersion from almost Hermitian manifolds, Turk. J. Math., 40 (2016), 43–70. http://dx.doi.org/10.3906/mat-1408-20 doi: 10.3906/mat-1408-20
![]() |
[7] | P. Baird, J. Wood, Harmonic morphisms between Riemannian manifolds, Oxford: Clarendon Press, 2003. http://dx.doi.org/10.1093/acprof:oso/9780198503620.001.0001 |
[8] |
J. Bourguignon, H. Lawson, Stability and isolation phenomena for Yang-Mills fields, Commun. Math. Phys., 79 (1981), 189–230. http://dx.doi.org/10.1007/BF01942061 doi: 10.1007/BF01942061
![]() |
[9] |
D. Chinea, Almost contact metric submersions, Rend. Circ. Mat. Palermo, 34 (1985), 89–104. http://dx.doi.org/10.1007/BF02844887 doi: 10.1007/BF02844887
![]() |
[10] |
J. Cabrerizo, A. Carriazo, L. Fernandez, M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Math. J., 42 (2000), 125–138. http://dx.doi.org/10.1017/S0017089500010156 doi: 10.1017/S0017089500010156
![]() |
[11] |
I. Erken, C. Murathan, On slant Riemannian submersions for cosymplectic manifolds, Bull. Korean Math. Soc., 51 (2014), 1749–1771. http://dx.doi.org/10.4134/BKMS.2014.51.6.1749 doi: 10.4134/BKMS.2014.51.6.1749
![]() |
[12] | M. Falcitelli, S. Ianus, A. Pastore, Riemannian submersions and related topics, New Jersey: World Scientific, 2004. http://dx.doi.org/10.1142/5568 |
[13] |
B. Fuglede, Harmonic morphisms between Riemannian manifolds, Annales de l'Institut Fourier, 28 (1978), 107–144. http://dx.doi.org/10.5802/aif.691 doi: 10.5802/aif.691
![]() |
[14] | A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715–737. |
[15] | S. Gudmundsson, The geometry of harmonic morphisms, Ph. D Thesis, University of Leeds, 1992. |
[16] | S. Gudmundsson, J. Wood, Harmonic morphisms between almost Hermitian manifolds, Boll. Unione Mat. Ital., 11 (1997), 185–197. |
[17] |
Y. Gunduzalp, Semi-slant submersions from almost product Riemannian manifolds, Demonstr. Math., 49 (2016), 345–356. http://dx.doi.org/10.1515/dema-2016-0029 doi: 10.1515/dema-2016-0029
![]() |
[18] | S. Ianus, M. Visinescu, Space-time compaction and Riemannian submersions, In: The mathematical heritage of C. F. Gauss, New Jersey: World Scientific, 1991, 358–371. http://dx.doi.org/10.1142/9789814503457_0026 |
[19] |
T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19 (1979), 215–229. http://dx.doi.org/10.1215/kjm/1250522428 doi: 10.1215/kjm/1250522428
![]() |
[20] |
S. Kumar, S. Kumar, S. Pandey, R. Prasad, Conformal hemi-slant submersions from almost hermitian manifolds, Commun. Korean Math. Soc., 35 (2020), 999–1018. http://dx.doi.org/10.4134/CKMS.c190448 doi: 10.4134/CKMS.c190448
![]() |
[21] |
M. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys., 41 (2000), 6918–6929. http://dx.doi.org/10.1063/1.1290381 doi: 10.1063/1.1290381
![]() |
[22] |
Y. Ohnita, On pluriharmonicity of stable harmonic maps, J. Lond. Math. Soc., 2 (1987), 563–568. http://dx.doi.org/10.1112/jlms/s2-35.3.563 doi: 10.1112/jlms/s2-35.3.563
![]() |
[23] |
B. O'Neill, The fundamental equations of a submersion, Michigan Math. J., 13 (1966), 459–469. http://dx.doi.org/10.1307/mmj/1028999604 doi: 10.1307/mmj/1028999604
![]() |
[24] |
K. Park, R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc., 50 (2013), 951–962. http://dx.doi.org/10.4134/BKMS.2013.50.3.951 doi: 10.4134/BKMS.2013.50.3.951
![]() |
[25] |
R. Prasad, S. Shukla, S. Kumar, On quasi bi-slant submersions, Mediterr. J. Math., 16 (2019), 155. http://dx.doi.org/10.1007/s00009-019-1434-7 doi: 10.1007/s00009-019-1434-7
![]() |
[26] |
R. Prasad, M. Akyol, P. Singh, S. Kumar, On quasi bi-slant submersions from Kenmotsu manifolds onto any Riemannian manifolds, J. Math. Ext., 16 (2022), 1–25. http://dx.doi.org/10.30495/JME.2022.1588 doi: 10.30495/JME.2022.1588
![]() |
[27] | R. Prasad, S. Kumar, Conformal anti-invariant submersions from nearly Kaehler Manifolds, Palestine Journal of Mathematics, 8 (2019), 234–247. |
[28] |
R. Ponge, H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geom. Dedicata, 48 (1993), 15–25. http://dx.doi.org/10.1007/BF01265674 doi: 10.1007/BF01265674
![]() |
[29] |
B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Centr. Eur. J. Math., 8 (2010), 437–447. http://dx.doi.org/10.2478/s11533-010-0023-6 doi: 10.2478/s11533-010-0023-6
![]() |
[30] |
B. Sahin, Semi-invariant Riemannian submersions from almost Hermitian manifolds, Can. Math. Bull., 56 (2013), 173–183. http://dx.doi.org/10.4153/CMB-2011-144-8 doi: 10.4153/CMB-2011-144-8
![]() |
[31] | B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie, 54 (2011), 93–105. |
[32] |
M. Shuaib, T. Fatima, A note on conformal hemi-slant submersions, Afr. Mat., 34 (2023), 4. http://dx.doi.org/10.1007/s13370-022-01036-2 doi: 10.1007/s13370-022-01036-2
![]() |
[33] |
H. Tastan, B. Sahin, S. Yanan, Hemi-slant submersions, Mediterr. J. Math., 13 (2016), 2171–2184. http://dx.doi.org/10.1007/s00009-015-0602-7 doi: 10.1007/s00009-015-0602-7
![]() |
[34] |
B. Watson, Almost Hermitian submersions, J. Differential Geom., 11 (1976), 147–165. http://dx.doi.org/10.4310/jdg/1214433303 doi: 10.4310/jdg/1214433303
![]() |
[35] | B. Watson, G, G'-Riemannian submersions and nonlinear gauge field equations of general relativity, In: Global analysis-analysis on manifolds: dedicated to Marston Morse, Leipzig: B. G. Teubner, 1983, 324–349. |
1. | Ibrahim Al-Dayel, Mohammad Shuaib, Conformal bi-slant submersion from Kenmotsu manifolds, 2023, 8, 2473-6988, 30269, 10.3934/math.20231546 | |
2. | Meraj Khan, Mohammad Shuaib, Ibrahim Al-Dayel, Cenap Ozel, Impact of structure vector field ξ-on pointwise semi-slant conformal submersions, 2024, 116, 0350-1302, 127, 10.2298/PIM2430127K |