Research article Special Issues

On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators

  • Received: 09 February 2022 Revised: 01 April 2022 Accepted: 10 April 2022 Published: 26 April 2022
  • MSC : 26A33, 34A25, 35M13, 35R11

  • In this paper, we used the Natural decomposition approach with nonsingular kernel derivatives to explore the modified Boussinesq and approximate long wave equations. These equations are crucial in defining the features of shallow water waves using a specific dispersion relationship. In this research, the convergence analysis and error analysis have been provided. The fractional derivatives Atangana-Baleanu and Caputo-Fabrizio are utilised throughout the paper. To obtain the equations results, we used Natural transform on fractional-order modified Boussinesq and approximate long wave equations, followed by inverse Natural transform. To verify the approach, we focused on two systems and compared them to the exact solutions. We compare exact and analytical results with the use of graphs and tables, which are in strong agreement with each other, to demonstrate the effectiveness of the suggested approaches. Also compared are the results achieved by implementing the suggested approaches at various fractional orders, confirming that the result comes closer to the exact solution as the value moves from fractional to integer order. The numerical and graphical results show that the suggested scheme is computationally very accurate and simple to investigate and solve fractional coupled nonlinear complicated phenomena that exist in science and technology.

    Citation: Thongchai Botmart, Ravi P. Agarwal, Muhammed Naeem, Adnan Khan, Rasool Shah. On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators[J]. AIMS Mathematics, 2022, 7(7): 12483-12513. doi: 10.3934/math.2022693

    Related Papers:

  • In this paper, we used the Natural decomposition approach with nonsingular kernel derivatives to explore the modified Boussinesq and approximate long wave equations. These equations are crucial in defining the features of shallow water waves using a specific dispersion relationship. In this research, the convergence analysis and error analysis have been provided. The fractional derivatives Atangana-Baleanu and Caputo-Fabrizio are utilised throughout the paper. To obtain the equations results, we used Natural transform on fractional-order modified Boussinesq and approximate long wave equations, followed by inverse Natural transform. To verify the approach, we focused on two systems and compared them to the exact solutions. We compare exact and analytical results with the use of graphs and tables, which are in strong agreement with each other, to demonstrate the effectiveness of the suggested approaches. Also compared are the results achieved by implementing the suggested approaches at various fractional orders, confirming that the result comes closer to the exact solution as the value moves from fractional to integer order. The numerical and graphical results show that the suggested scheme is computationally very accurate and simple to investigate and solve fractional coupled nonlinear complicated phenomena that exist in science and technology.



    加载中


    [1] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, New York: Academic Press, 1999. http://dx.doi.org/10.1016/s0076-5392(99)x8001-5
    [2] M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Geophys. J. Int., 13 (1967), 529–539. http://dx.doi.org/https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [3] V. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math., 118 (2000), 241–259. http://dx.doi.org/10.1016/S0377-0427(00)00292-2 doi: 10.1016/S0377-0427(00)00292-2
    [4] H. Jafari, S. Seifi, Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation, Commun. Nonlinear Sci., 14 (2009), 2006–2012. http://dx.doi.org/10.1016/j.cnsns.2008.05.008 doi: 10.1016/j.cnsns.2008.05.008
    [5] H. Jafari, S. Seifi, Solving a system of nonlinear fractional partial differential equations using homotopy analysis method, Commun. Nonlinear Sci., 14 (2009), 1962–1969. http://dx.doi.org/10.1016/j.cnsns.2008.06.019 doi: 10.1016/j.cnsns.2008.06.019
    [6] S. Momani, N. Shawagfeh, Decomposition method for solving fractional Riccati differential equations, Appl. Math. Comput., 182 (2006), 1083–1092. http://dx.doi.org/10.1016/j.amc.2006.05.008 doi: 10.1016/j.amc.2006.05.008
    [7] K. Oldham, J. Spanier, The fractional calculus: theory and applications of differentiation and integration to arbitrary order, New York: Academic Press, 1974.
    [8] K. Diethelm, N. Ford, A. Freed, A predictor-corrector approach for the numerical solution of fractional differential equation, Nonlinear Dynam., 29 (2002), 3–22. http://dx.doi.org/10.1023/A:1016592219341 doi: 10.1023/A:1016592219341
    [9] K. Millerand, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [10] S. Kemple, H. Beyer, Global and causal solutions of fractional differential equations, Proceedings of 2nd international workshop, 1997,210–216.
    [11] A. Kilbas, J. Trujillo, Differential equations of fractional order: methods, results and problem, Appl. Anal., 78 (2001), 153–192. http://dx.doi.org/10.1080/00036810108840931 doi: 10.1080/00036810108840931
    [12] R. Hilfer, Fractional calculus and regular variation in thermodynamics, In: Applications of fractional calculus in physics, Singapore: World Scientific, 2000,429–463. http://dx.doi.org/10.1142/9789812817747_0009
    [13] S. Saha Ray, B. Poddar, R. Bera, Analytical solution of a dynamic system containing fractional derivative of order one-half by Adomian decomposition method, J. Appl. Mech., 72 (2005), 290–295. http://dx.doi.org/10.1115/1.1839184 doi: 10.1115/1.1839184
    [14] S. Saha Ray, R. Bera, An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Appl. Math. Comput., 167 (2005), 561–571. http://dx.doi.org/10.1016/j.amc.2004.07.020 doi: 10.1016/j.amc.2004.07.020
    [15] S. Saha Ray, R. Bera, Analytical solution of a fractional diffusion equation by Adomian decomposition method, Appl. Math. Comput., 174 (2006), 329–336. http://dx.doi.org/10.1016/j.amc.2005.04.082 doi: 10.1016/j.amc.2005.04.082
    [16] S. Saha Ray, Exact solutions for time-fractional diffusion-wave equations by decomposition method, Phys. Scr., 75 (2007), 53–61. http://dx.doi.org/10.1088/0031-8949/75/1/008 doi: 10.1088/0031-8949/75/1/008
    [17] S. Saha Ray, A new approach for the application of Adomian decomposition method for the solution of fractional space diffusion equation with insulated ends, Appl. Math. Comput., 202 (2008), 544–549. http://dx.doi.org/10.1016/j.amc.2008.02.043 doi: 10.1016/j.amc.2008.02.043
    [18] S. Saha Ray, R. Bera, Analytical solution of the Bagley Torvik equation by Adomian decomposition method, Appl. Math. Comput., 168 (2005), 398–410. http://dx.doi.org/10.1016/j.amc.2004.09.006 doi: 10.1016/j.amc.2004.09.006
    [19] K. Nisar, K. Ali, M. Inc, M. Mehanna, H. Rezazadeh, L. Akinyemi, New solutions for the generalized resonant nonlinear Schrodinger equation, Results Phys., 53 (2002), 105153. http://dx.doi.org/10.1016/j.rinp.2021.105153 doi: 10.1016/j.rinp.2021.105153
    [20] M. Alesemi, N. Iqbal, A. Hamoud, The analysis of fractional-order proportional delay physical models via a novel transform, Complexity, 2022 (2022), 2431533. http://dx.doi.org/10.1155/2022/2431533 doi: 10.1155/2022/2431533
    [21] H. Yepez-Martinez, M. Khater, H. Rezazadeh, M. Inc, Analytical novel solutions to the fractional optical dynamics in a medium with polynomial law nonlinearity and higher order dispersion with a new local fractional derivative, Phy, Lett, A, 420 (2021), 127744. http://dx.doi.org/10.1016/j.physleta.2021.127744 doi: 10.1016/j.physleta.2021.127744
    [22] P. Sunthrayuth, A, Zidan, S, Yao, R. Shah, M. Inc, The comparative study for solving fractional-order Fornberg-Whitham equation via $\rho$-Laplace transform, Symmetry, 13 (2021), 784. http://dx.doi.org/10.3390/sym13050784 doi: 10.3390/sym13050784
    [23] K. Nonlaopon, A. Alsharif, A. Zidan, A. Khan, Y. Hamed, R. Shah, Numerical investigation of fractional-order Swift-Hohenberg equations via a novel transform, Symmetry, 13 (2021), 1263. http://dx.doi.org/10.3390/sym13071263 doi: 10.3390/sym13071263
    [24] M. Naeem, A. Zidan, K. Nonlaopon, M. Syam, Z. Al-Zhour, R. Shah, A new analysis of fractional-order equal-width equations via novel techniques, Symmetry, 13 (2021), 886. http://dx.doi.org/10.3390/sym13050886 doi: 10.3390/sym13050886
    [25] R. Agarwal, F. Mofarreh, R. Shah, W. Luangboon, K. Nonlaopon, An analytical technique, based on natural transform to solve fractional-order parabolic equations, Entropy, 23 (2021), 1086. http://dx.doi.org/10.3390/e23081086 doi: 10.3390/e23081086
    [26] M. Areshi, A. Khan, R. Shah, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform, AIMS Mathematics, 7 (2022), 6936–6958. http://dx.doi.org/10.3934/math.2022385 doi: 10.3934/math.2022385
    [27] H. Khan, A. Khan, M. Al-Qurashi, R. Shah, D. Baleanu, Modified modelling for heat like equations within Caputo operator, Energies, 13 (2020), 2002. http://dx.doi.org/10.3390/en13082002 doi: 10.3390/en13082002
    [28] M. Alesemi, N. Iqbal, M. Abdo, Novel investigation of fractional-order Cauchy-reaction diffusion eEquation involving Caputo-Fabrizio operator, J. Funct. Space., 2022 (2022), 4284060. http://dx.doi.org/10.1155/2022/4284060 doi: 10.1155/2022/4284060
    [29] H. Thabet, S. Kendre, J. Peters, Travelling wave solutions for fractional Korteweg-de Vries equations via an approximate-analytical method, AIMS Mathematics, 4 (2019), 1203–1222. http://dx.doi.org/10.3934/math.2019.4.1203 doi: 10.3934/math.2019.4.1203
    [30] A. Iqbal, A. Akgul, R. Shah, A. Bariq, M. Mossa Al-Sawalha, A. Ali, On solutions of fractional-order gas dynamics equation by effective techniques, J. Funct. Space., 2022 (2022), 3341754. http://dx.doi.org/10.1155/2022/3341754 doi: 10.1155/2022/3341754
    [31] W. Mohammed, N. Iqbal, Impact of the same degenerate additive noise on a coupled system of fractional space diffusion equations, Fractals, 30 (2022), 22400333. http://dx.doi.org/10.1142/S0218348X22400333 doi: 10.1142/S0218348X22400333
    [32] H. Eltayeb, Y. Abdalla, I. Bachar, M. Khabir, Fractional telegraph equation and its solution by natural transform decomposition method, Symmetry, 11 (2019), 334. http://dx.doi.org/10.3390/sym11030334 doi: 10.3390/sym11030334
    [33] Hajira, H. Khan, A. Khan, P. Kumam, D. Baleanu, M. Arif, An approximate analytical solution of the Navier-Stokes equations within Caputo operator and Elzaki transform decomposition method, Adv. Differ. Equ., 2020 (2020), 622. http://dx.doi.org/10.1186/s13662-020-03058-1 doi: 10.1186/s13662-020-03058-1
    [34] P. Sunthrayuth, F. Ali, A. Alderremy, R. Shah, S. Aly, Y. Hamed, J. Katle, The numerical investigation of fractional-order Zakharov-Kuznetsov equations, Complexity, 2021 (2021), 4570605. http://dx.doi.org/10.1155/2021/4570605 doi: 10.1155/2021/4570605
    [35] M. Naeem, O. Azhar, A. Zidan, K. Nonlaopon, R. Shah, Numerical analysis of fractional-order parabolic equations via Elzaki transform, J. Funct. Space., 2021 (2021), 3484482. http://dx.doi.org/10.1155/2021/3484482 doi: 10.1155/2021/3484482
    [36] F. Mirzaee, S. Rezaei, N. Samadyar, Application of combination schemes based on radial basis functions and finite difference to solve stochastic coupled nonlinear time fractional sine-Gordon equations, Comp. Appl. Math., 41 (2022), 10. http://dx.doi.org/10.1007/s40314-021-01725-x doi: 10.1007/s40314-021-01725-x
    [37] F. Mirzaee, S. Rezaei, N. Samadyar, Solution of time-fractional stochastic nonlinear sine-Gordon equation via finite difference and meshfree techniques, Math. Method. Appl. Sci., 45 (2022), 3426–3438. http://dx.doi.org/10.1002/mma.7988 doi: 10.1002/mma.7988
    [38] F. Mirzaee, S. Rezaei, N. Samadyar, Solving one-dimensional nonlinear stochastic Sine-Gordon equation with a new meshfree technique, Int. J. Numer. Model. El., 34 (2021), 2856. http://dx.doi.org/10.1002/jnm.2856 doi: 10.1002/jnm.2856
    [39] F. Mirzaee, N. Samadyar, Combination of finite difference method and meshless method based on radial basis functions to solve fractional stochastic advection-diffusion equations, Eng. Comput., 36 (2020), 1673–1686. http://dx.doi.org/10.1007/s00366-019-00789-y doi: 10.1007/s00366-019-00789-y
    [40] F. Mirzaee, N. Samadyar, Numerical solution of time fractional stochastic Korteweg-de Vries equation via implicit meshless approach, Iran. J. Sci. Technol. Trans. Sci., 43 (2019), 2905–2912. http://dx.doi.org/10.1007/s40995-019-00763-9 doi: 10.1007/s40995-019-00763-9
    [41] S. Abbasbandy, The application of homotopy analysis method to nonlinear equations arising in heat transfer, Phys. Lett. A, 360 (2006), 109–113. http://dx.doi.org/10.1016/j.physleta.2006.07.065 doi: 10.1016/j.physleta.2006.07.065
    [42] M. Khater, A. Jhangeer, H. Rezazadeh, L. Akinyemi, M. Ali Akbar, M. Inc, et al., New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques, Opt. Quant. Electron., 53 (2021), 509. http://dx.doi.org/10.1007/s11082-021-03267-2 doi: 10.1007/s11082-021-03267-2
    [43] F. Samsami Khodadad, S. Mirhosseini-Alizamini, B. Günay, L. Akinyemi, H. Rezazadeh, M. Inc, Abundant optical solitons to the Sasa-Satsuma higher-order nonlinear Schrodinger equation, Opt. Quant. Electron., 53 (2021), 702. http://dx.doi.org/10.1007/s11082-021-03338-4 doi: 10.1007/s11082-021-03338-4
    [44] A. Kanwal, C. Phang, J. Loh, New collocation scheme for solving fractional partial differential equations, Hacet. J. Math. Stat., 49 (2020), 1107–1125. http://dx.doi.org/10.15672/hujms.459621 doi: 10.15672/hujms.459621
    [45] Y. Ng, C. Phang, J. Loh, A. Isah, Analytical solutions of incommensurate fractional differential equation systems with fractional order $1 < \alpha, \beta < 2$ via bivariate Mittag-Leffler functions, AIMS Mathematics, 7 (2022), 2281–2317. http://dx.doi.org/10.3934/math.2022130 doi: 10.3934/math.2022130
    [46] N. Samadyara, Y. Ordokhania, F. Mirzaee, The couple of Hermite-based approach and Crank-Nicolson scheme to approximate the solution of two dimensional stochastic diffusion-wave equation of fractional order, Eng. Anal. Bound. Elem., 118 (2020), 285–294. http://dx.doi.org/10.1016/j.enganabound.2020.05.010 doi: 10.1016/j.enganabound.2020.05.010
    [47] N. Samadyara, Y. Ordokhania, F. Mirzaee, Hybrid Taylor and block-pulse functions operational matrix algorithm and its application to obtain the approximate solution of stochastic evolution equation driven by fractional Brownian motion, Commun. Nonlinear Sci., 90 (2020), 105346. http://dx.doi.org/10.1016/j.cnsns.2020.105346 doi: 10.1016/j.cnsns.2020.105346
    [48] N. Samadyar, F. Mirzaee, Orthonormal Bernoulli polynomials collocation approach for solving stochastic Volterra integral equations of Abel type, Int. J. Numer. Model. El., 33 (2020), 2688. http://dx.doi.org/10.1002/jnm.2688 doi: 10.1002/jnm.2688
    [49] F. Mirzaee, K. Sayevand, S. Rezaei, N. Samadyar, Finite difference and spline approximation for solving fractional stochastic advection-diffusion equation, Iran. J. Sci. Technol. Trans. Sci., 45 (2021), 607–617. http://dx.doi.org/10.1007/s40995-020-01036-6 doi: 10.1007/s40995-020-01036-6
    [50] F. Mirzaee, S. Rezaei, N. Samadyar, Numerical solution of two-dimensional stochastic time-fractional Sine-Gordon equation on non-rectangular domains using finite difference and meshfree methods, Eng. Anal. Bound. Elem., 127 (2021), 53–63. http://dx.doi.org/10.1016/j.enganabound.2021.03.009 doi: 10.1016/j.enganabound.2021.03.009
    [51] H. Halidoua, S. Abbagariab, A. Houwec, M. Incdef, B. Thomasg, Rational W-shape solitons on a nonlinear electrical transmission line with Josephson junction, Phys. Lett. A, 430 (2022), 127951. http://dx.doi.org/10.1016/j.physleta.2022.127951 doi: 10.1016/j.physleta.2022.127951
    [52] G. Whitham, Variational methods and applications to water waves, In: Hyperbolic equations and waves, Berlin: Springer, 1970. http://dx.doi.org/10.1007/978-3-642-87025-5_16
    [53] L. Broer, Approximate equations for long water waves, Appl. sci. Res., 31 (1975), 377–395. http://dx.doi.org/10.1007/BF00418048 doi: 10.1007/BF00418048
    [54] D. Kaup, A higher-order water-wave equation and the method for solving it, Prog. Theor. Phys., 54 (1975), 396–408. http://dx.doi.org/10.1143/PTP.54.396 doi: 10.1143/PTP.54.396
    [55] S. Saha Ray, A novel method for travelling wave solutions of fractional Whitham-Broer-Kaup, fractional modified Boussinesq and fractional approximate long wave equations in shallow water, Math. Method. Appl. Sci., 38 (2015), 1352–1368. http://dx.doi.org/10.1002/mma.3151 doi: 10.1002/mma.3151
    [56] K. Nonlaopon, M. Naeem, A. Zidan, R. Shah, A. Alsanad, A. Gumaei, Numerical investigation of the time-fractional Whitham-Broer-Kaup equation involving without singular kernel operators, Complexity, 2021 (2021), 7979365. http://dx.doi.org/10.1155/2021/7979365 doi: 10.1155/2021/7979365
    [57] R. Shah, H. Khan, D. Baleanu, Fractional Whitham-Broer-Kaup equations within modified analytical approaches, Axioms, 8 (2019), 125. http://dx.doi.org/10.3390/axioms8040125 doi: 10.3390/axioms8040125
    [58] K. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [59] I. Podlubny, Fractional differential equations, In: Mathematics in science and engineering, San Diego: Academic Press, 1999, 1–340.
    [60] K. Diethelm, The analysis of fractional differential equations, Berlin: Springer-Verlag, 2010. http://dx.doi.org/10.1007/978-3-642-14574-2
    [61] M. Zhou, A. Ravi Kanth, K. Aruna, K. Raghavendar, H. Rezazadeh, M. Inc, et al., Numerical solutions of time fractional Zakharov-Kuznetsov equation via natural transform decomposition method with nonsingular kernel derivatives, J. Funct. Space., 2021 (2021), 9884027. http://dx.doi.org/10.1155/2021/9884027 doi: 10.1155/2021/9884027
    [62] G. Adomian, A new approach to nonlinear partial differential equations, J. Math. Anal. Appl., 102 (1984), 420–434. http://dx.doi.org/10.1016/0022-247X(84)90182-3 doi: 10.1016/0022-247X(84)90182-3
    [63] G. Adomian, Solving frontier problems of physics: the decomposition method, Dordrecht: Springer, 1994. http://dx.doi.org/10.1007/978-94-015-8289-6
    [64] S. El-Sayed, D. Kaya, Exact and numerical travelling wave solutions of Whitham-Broer-Kaup equations, Appl. Math. Comput., 167 (2005), 1339–1349. http://dx.doi.org/10.1016/j.amc.2004.08.012 doi: 10.1016/j.amc.2004.08.012
    [65] M. Rafei, H. Daniali, Application of the variational iteration method to the Whitham-Broer-Kaup equations, Comput. Math. Appl., 54 (2007), 1079–1085. http://dx.doi.org/10.1016/j.camwa.2006.12.054 doi: 10.1016/j.camwa.2006.12.054
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1691) PDF downloads(117) Cited by(22)

Article outline

Figures and Tables

Figures(10)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog