Research article Special Issues

A variety of dynamic $ \alpha $-conformable Steffensen-type inequality on a time scale measure space

  • Received: 01 December 2021 Revised: 06 January 2022 Accepted: 16 January 2022 Published: 12 April 2022
  • MSC : 26D20, 26D10, 34A12, 26D15, 34A40

  • The main objective of this work is to establish several new alpha-conformable of Steffensen-type inequalities on time scales. Our results will be proved by using time scales calculus technique. We get several well-known inequalities due to Steffensen, if we take $ \alpha = 1 $. Some cases we get continuous inequalities when $ \mathbb{T} = \mathbb{R} $ and discrete inequalities when $ \mathbb{T} = \mathbb{Z} $.

    Citation: Ahmed A. El-Deeb, Osama Moaaz, Dumitru Baleanu, Sameh S. Askar. A variety of dynamic $ \alpha $-conformable Steffensen-type inequality on a time scale measure space[J]. AIMS Mathematics, 2022, 7(6): 11382-11398. doi: 10.3934/math.2022635

    Related Papers:

  • The main objective of this work is to establish several new alpha-conformable of Steffensen-type inequalities on time scales. Our results will be proved by using time scales calculus technique. We get several well-known inequalities due to Steffensen, if we take $ \alpha = 1 $. Some cases we get continuous inequalities when $ \mathbb{T} = \mathbb{R} $ and discrete inequalities when $ \mathbb{T} = \mathbb{Z} $.



    加载中


    [1] Y. Tian, W. Zhanshan, Composite slack-matrix-based integral inequality and its application to stability analysis of time-delay systems, Appl. Math. Lett., 120 (2021), 107252. https://doi.org/10.1016/j.aml.2021.107252 doi: 10.1016/j.aml.2021.107252
    [2] Y. Tian, W. Zhanshan, A new multiple integral inequality and its application to stability analysis of time-delay systems, Appl. Math. Lett., 105 (2020), 106325. https://doi.org/10.1016/j.aml.2020.106325 doi: 10.1016/j.aml.2020.106325
    [3] D. R. Anderson, Time-scale integral inequalities, J. Inequal. Pure Appl. Math., 6 (2005).
    [4] U. M. Ozkan, H. Yildirim, Steffensen's integral inequality on time scales, J. Inequal. Appl., 2007 (2007). https: //doi.org/10.1155/2007/46524
    [5] J. Jakšetić, J. Pečarić, K. S. Kalamir, Extension of Cerone's generalizations of Steffensen's inequality, Jordan J. Math. Stat., 8 (2015), 179–194.
    [6] J. C. Evard, H. Gauchman, Steffensen type inequalities over general measure spaces, Analysis, 17 (1997), 301–322. https://doi.org/10.1524/anly.1997.17.23.301 doi: 10.1524/anly.1997.17.23.301
    [7] J. F. Steffensen, On certain inequalities between mean values, and their application to actuarial problems, Scandinavian Actuar. J., 1918 (1918), 82–97. https://doi.org/10.1080/03461238.1918.10405302 doi: 10.1080/03461238.1918.10405302
    [8] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
    [9] V. Daftardar-Gejji, H. Jafari, Analysis of a system of nonautonomous fractional differential equations involving caputo derivatives, J. Math. Anal. Appl., 328 (2007), 1026–1033. https://doi.org/10.1016/j.jmaa.2006.06.007 doi: 10.1016/j.jmaa.2006.06.007
    [10] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [11] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
    [12] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [13] O. S. Iyiola, E. R. Nwaeze, Some new results on the new conformable fractional calculus with application using d'alambert approach, Progr. Fract. Differ. Appl., 2 (2016), 115–122. https://doi.org/10.18576/pfda/020204 doi: 10.18576/pfda/020204
    [14] O. S. Iyiola, G. O. Ojo, On the analytical solution of fornberg-whitham equation with the new fractional derivative, Pramana, 85 (2015), 567–575. https://doi.org/10.1007/s12043-014-0915-2 doi: 10.1007/s12043-014-0915-2
    [15] O. S. Iyiola, O. Tasbozan, A. Kurt, Y. Çenesiz, On the analytical solutions of the system of conformable time-fractional robertson equations with 1-d diffusion, Chaos Soliton. Fract., 94 (2017), 1–7.
    [16] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [17] N. Benkhettou, S. Hassani, D. F. Torres, A conformable fractional calculus on arbitrary time scales, J. King Saud Univ. Sci., 28 (2016), 93–98. https://doi.org/10.1016/j.jksus.2015.05.003 doi: 10.1016/j.jksus.2015.05.003
    [18] E. R. Nwaeze, A mean value theorem for the conformable fractional calculus on arbitrary time scales, Progr. Fract. Differ. Appl., 2 (2016), 287–291. https://doi.org/10.18576/pfda/020406 doi: 10.18576/pfda/020406
    [19] E. R. Nwaeze, D. F. M. Torres, Chain rules and inequalities for the bht fractional calculus on arbitrary timescales, Arab. J. Math., 6 (2017), 13–20. https://doi.org/10.1007/s40065-016-0160-2 doi: 10.1007/s40065-016-0160-2
    [20] S. H. Sakerr, M. Kenawy, G. H. AlNemer, M. Zakarya, Some fractional dynamic inequalities of hardy's type via conformable calculus, Mathematics, 8 (2020), 434. https://doi.org/10.3390/math8030434 doi: 10.3390/math8030434
    [21] M. Zakaryaed, M. Altanji, G. H. AlNemer, A. El-Hamid, A. Hoda, C. Cesarano, et al., Fractional reverse coposn's inequalities via conformable calculus on time scales, Symmetry, 13 (2021), 542. https://doi.org/10.3390/sym13040542 doi: 10.3390/sym13040542
    [22] Y. M. Chu, M. A. Khan, T. Ali, S. S. Dragomir, Inequalities for $\alpha$-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 1–12. https://doi.org/10.1186/s13660-017-1371-6 doi: 10.1186/s13660-017-1371-6
    [23] M. A. Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, Hermite-Hadamard type inequalities for conformable fractional integrals, RACSAM Rev. R. Acad. A, 112 (2018), 1033–1048. https://doi.org/10.1007/s13398-017-0408-5 doi: 10.1007/s13398-017-0408-5
    [24] E. Set, A. Gözpnar, A. Ekinci, Hermite-Hadamard type inequalities via confortable fractional integrals, Acta Math. Univ. Comen., 86 (2017), 309–320.
    [25] M. Sarikaya, H. Yaldiz, H. Budak, Steffensen's integral inequality for conformable fractional integrals, Int. J. Anal. Appl., 15 (2017), 23–30.
    [26] M. Z. ASarikaya, C. C. Billisik, Opial type inequalities for conformable fractional integrals via convexity, Chaos Soliton. Fract., 2018.
    [27] M. Sarikaya, H. Budak, New inequalities of opial type for conformable fractional integrals, Turkish J. Math., 41 (2017), 1164–1173. https://doi.org/10.3906/mat-1606-91 doi: 10.3906/mat-1606-91
    [28] R. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: A survey, Math. Inequal. Appl., 4 (2001), 535–557.
    [29] R. Agarwal, D. O'Regan, S. Saker, Dynamic inequalities on time scales, Springer, Cham, 2014.
    [30] G. A. Anastassiou, Foundations of nabla fractional calculus on time scales and inequalities, Comput. Math. Appl., 59 (2010), 3750–3762. https://doi.org/10.1016/j.camwa.2010.03.072 doi: 10.1016/j.camwa.2010.03.072
    [31] G. A. Anastassiou, Principles of delta fractional calculus on time scales and inequalities, Math. Comput. Model., 52 (2010), 556–566. https://doi.org/10.1016/j.mcm.2010.03.055 doi: 10.1016/j.mcm.2010.03.055
    [32] G. A. Anastassiou, Integral operator inequalities on time scales, Int. J. Differ. Equ., 7 (2012), 111–137.
    [33] M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Birkhäuser Boston, Inc., Boston, MA, 2001.
    [34] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhäuser Boston, Inc., Boston, MA, 2003.
    [35] S. Hilger, Analysis on measure chains—a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56. https://doi.org/10.1007/BF03323153 doi: 10.1007/BF03323153
    [36] A. A. El-Deeb, A. Abdeldaim, Z. A. Khan, On some generalizations of dynamic Opial-type inequalities on time scales, Adv. Differ.Equ., 2019. https://doi.org/10.1186/s13662-019-2268-0
    [37] W. N. Li, Some new dynamic inequalities on time scales, J. Math. Anal. Appl., 319 (2016), 802–814. https://doi.org/10.1016/j.jmaa.2005.06.065 doi: 10.1016/j.jmaa.2005.06.065
    [38] J. Pečarić, A. Josip, K. Perušić, Mercer and Wu- Srivastava generalisations of Steffensen's inequality, Appl. Math. Comput., 219 (2013), 10548–10558. https://doi.org/10.1016/j.amc.2013.04.028 doi: 10.1016/j.amc.2013.04.028
    [39] J. Pečarić, Notes on some general inequalities, Pub. Inst. Math., 32 (1982), 131–135.
    [40] M. Sahir, Dynamic inequalities for convex functions harmonized on time scales, J. Appl. Math. Phys., 5 (2017), 2360–2370. https://doi.org/10.4236/jamp.2017.512193 doi: 10.4236/jamp.2017.512193
    [41] S. H. Saker, A. A. El-Deeb, H. M. Rezk, R. P. Agarwal, On Hilbert's inequality on time scales, Appl. Anal. Discrete Math., 11 (2017), 399–423. https://doi.org/10.2298/AADM170428001S doi: 10.2298/AADM170428001S
    [42] Y. Tian, A. A. El-Deeb, F. Meng, Some nonlinear delay Volterra-Fredholm type dynamic integral inequalities on time scales, Discrete Dyn. Nat. Soc., 2018. https://doi.org/10.1155/2018/5841985
    [43] S. H. Wu, H. M. Srivastava, Some improvements and generalizations of Steffensen's integral inequality, Appl. Math. Comput., 192 (2007), 422–428. https://doi.org/10.1016/j.amc.2007.03.020 doi: 10.1016/j.amc.2007.03.020
    [44] Q. Sheng, M. Fadag, J. Henderson, J. M. Davis, An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Anal. Real World Appl., 7 (2006), 395–413. https://doi.org/10.1016/j.nonrwa.2005.03.008 doi: 10.1016/j.nonrwa.2005.03.008
    [45] D. R. Anderson, Taylor's formula and integral inequalities for conformable fractional derivatives, Contrib. Math. Eng., 2016. https://doi.org/10.1007/978-3-319-31317-7_2
    [46] M. Sarikaya, H. Yaldiz, H. Budak, Steffensen's integral inequality for conformable fractional integrals, Int. J. Anal. Appl., 15 (2017), 23–30.
    [47] J. Pečarić, K. S. Kalamir, Generalized Steffensen type inequalities involving convex functions, J. Funct. Spaces, 2014 (2014). https://doi.org/10.1155/2014/428030
    [48] S. O. Shah, A. Zada, M. Muzammil, M. Tayyab, R. Rizwan, On the Bielecki-Ulam's type stability results of first order non-linear impulsive delay dynamic systems on time scales, Qual. Theory Dyn. Syst., 2 (2020). https://doi.org/10.1007/s12346-020-00436-8
    [49] S. O. Shah, A. Zada, A. E. Hamza, Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time scales, Qual. Theory Dyn. Syst., 18 (2019). https://doi.org/10.1007/s12346-019-00315-x
    [50] S. O. Shah, A. Zada, Existence, uniqueness and stability of solution to mixed integral dynamic systems with instantaneous and noninstantaneous impulses on time scales, Appl. Math. Comput., 359 (2019), 202–213. https://doi.org/10.1016/j.amc.2019.04.044 doi: 10.1016/j.amc.2019.04.044
    [51] S. O. Shah, A. Zada, C. Tunc, A. Asad, Bielecki- Ulam-Hyers stability of nonlinear Volterra impulsive integro-delay dynamic systems on time scales, Punjab Univ. J. Math., 53 (2021), 339–349.
    [52] S. O. Shah, A. Zada, On the stability analysis of non-linear Hammerstein impulsive integro-dynamic system on time scales with delay, Punjab Univ. J. Math., 51 (2019), 89–98.
    [53] A. Zada, S. O. Shah, Hyers-Ulam stability of first-order nonlinear delay differential equations with fractional integrable impulses, Hacet. J. Math. Stat., 47 (2018), 1196–1205. https://doi.org/10.15672/HJMS.2017.496 doi: 10.15672/HJMS.2017.496
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1347) PDF downloads(48) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog