Research article Special Issues

Strong interaction of Jafari decomposition method with nonlinear fractional-order partial differential equations arising in plasma via the singular and nonsingular kernels

  • Received: 17 October 2021 Revised: 29 January 2022 Accepted: 06 February 2022 Published: 22 February 2022
  • MSC : 46S40, 47H10, 54H25

  • This research utilizes the Jafari transform and the Adomian decomposition method to derive a fascinating explicit pattern for the outcomes of the KdV, mKdV, K(2,2) and K(3,3) models that involve the Caputo fractional derivative operator and the Atangana-Baleanu fractional derivative operator in the Caputo sense. The novel exact-approximate solutions are derived from the formulation of trigonometric, hyperbolic, and exponential function forms. Laser and plasma sciences may benefit from these solutions. It is demonstrated that this approach produces a simple and effective mathematical framework for tackling nonlinear problems. To provide additional context for these ideas, simulations are performed, employing a computationally packaged program to assist in comprehending the implications of solutions.

    Citation: Saima Rashid, Rehana Ashraf, Fahd Jarad. Strong interaction of Jafari decomposition method with nonlinear fractional-order partial differential equations arising in plasma via the singular and nonsingular kernels[J]. AIMS Mathematics, 2022, 7(5): 7936-7963. doi: 10.3934/math.2022444

    Related Papers:

  • This research utilizes the Jafari transform and the Adomian decomposition method to derive a fascinating explicit pattern for the outcomes of the KdV, mKdV, K(2,2) and K(3,3) models that involve the Caputo fractional derivative operator and the Atangana-Baleanu fractional derivative operator in the Caputo sense. The novel exact-approximate solutions are derived from the formulation of trigonometric, hyperbolic, and exponential function forms. Laser and plasma sciences may benefit from these solutions. It is demonstrated that this approach produces a simple and effective mathematical framework for tackling nonlinear problems. To provide additional context for these ideas, simulations are performed, employing a computationally packaged program to assist in comprehending the implications of solutions.



    加载中


    [1] K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y. M. Chu, Almost sectorial operators on $\Psi$-Hilfer derivative fractional impulsive integro-differential equations, Math. Method. Appl. Sci., 2021. https://doi.org/10.1002/mma.7954 doi: 10.1002/mma.7954
    [2] S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026. https://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266
    [3] Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim, J. R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal Fract., 5 (2021), 119. https://doi.org/10.3390/fractalfract5030119 doi: 10.3390/fractalfract5030119
    [4] T. H. Zhao, M. I. Khan, Y. M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Math. Method. Appl. Sci., 2021. https://doi.org/10.1002/mma.7310 doi: 10.1002/mma.7310
    [5] Y. M. Chu, B. M. Shankaralingappa, B. J. Gireesha, F. Alzahrani, M. I. Khan, S. U. Khan, Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface, Appl. Math. Comput., 419 (2022), 126883. https://doi.org/10.1016/j.amc.2021.126883 doi: 10.1016/j.amc.2021.126883
    [6] M. Nazeer, F. Hussain, M. I. Khan, A. ur Rehman, E. R. El-Zahar, Y. M. Chu, et al., Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel, Appl. Math. Comput., 420 (2022), 126868. https://doi.org/10.1016/j.amc.2021.126868 doi: 10.1016/j.amc.2021.126868
    [7] T. H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, et al., A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math., 20 (2021), 160–176.
    [8] S. Rashid, F. Jarad, T. M. Jawa, A study of behaviour for fractional order diabetes model via the nonsingular kernel, AIMS Mathematics, 7 (2022), 5072–5092. https://doi.org/10.3934/math.2022282 doi: 10.3934/math.2022282
    [9] S. Rashid, F. Jarad, F. S. Bayones, On new computations of the fractional epidemic childhood disease model pertaining to the generalized fractional derivative with nonsingular kernel, AIMS Mathematics, 7 (2022), 4552–4573. https://doi.org/10.3934/math.2022254 doi: 10.3934/math.2022254
    [10] T. H. Zhao, M. K. Wang, Y. M. Chu, On the bounds of the perimeter of an ellipse, Acta Math. Sci., 42 (2022), 491–501. https://doi.org/10.1007/s10473-022-0204-y doi: 10.1007/s10473-022-0204-y
    [11] T. H. Zhao, M. K. Wang, G. J. Hai, Y. M. Chu, Landen inequalities for Gaussian hypergeometric function, RACSAM, 116 (2022), 53. https://doi.org/10.1007/s13398-021-01197-y doi: 10.1007/s13398-021-01197-y
    [12] T. H. Zhao, Z. Y. He, Y. M. Chu, Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals, Comput. Methods Funct. Theory, 21 (2021), 413–426. https://doi.org/10.1007/s40315-020-00352-7 doi: 10.1007/s40315-020-00352-7
    [13] T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 96. https://doi.org/10.1007/s13398-020-00825-3 doi: 10.1007/s13398-020-00825-3
    [14] T. H. Zhao, M. K. Wang, Y. M. Chu, Concavity and bounds involving generalized elliptic integral of the first kind, J. Math. Inequal, 15 (2021), 701–724. https://doi.org/10.7153/jmi-2021-15-50 doi: 10.7153/jmi-2021-15-50
    [15] H. H. Chu, T. H. Zhao, Y. M. Chu, Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means, Math. Slovaca, 70 (2020), 1097–1112. https://doi.org/10.1515/ms-2017-0417 doi: 10.1515/ms-2017-0417
    [16] T. H. Zhao, Z. Y. He, Y. M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, AIMS Mathematics, 5 (2020), 6479–6495. https://doi.org/10.3934/math.2020418 doi: 10.3934/math.2020418
    [17] M. Caputo, Elasticita e dissipazione, Bologna: Zanichelli, 1969.
    [18] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, The Netherlands: Amsterdam, 2006.
    [20] W. X. Ma, N-soliton solutions and the Hirota conditions in (1+1)-dimensions, Int. J. Nonlin. Sci. Num., 23 (2022), 123–133. https://doi.org/10.1515/ijnsns-2020-0214 doi: 10.1515/ijnsns-2020-0214
    [21] W. X. Ma, N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation, Math. Comput. Simulat., 190 (2021), 270–279. https://doi.org/10.1016/j.matcom.2021.05.020 doi: 10.1016/j.matcom.2021.05.020
    [22] W. X. Ma, N-soliton solution of a combined pKP-BKP equation, J. Geom. Phys., 165 (2021), 104191. https://doi.org/10.1016/j.geomphys.2021.104191 doi: 10.1016/j.geomphys.2021.104191
    [23] W. X. Ma, X. L. Yong, X. Lü, Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations, Wave Motion, 103 (2021), 102719. https://doi.org/10.1016/j.wavemoti.2021.102719 doi: 10.1016/j.wavemoti.2021.102719
    [24] R. G. Zhang, L. G. Yang, Theoretical analysis of equatorial near-inertial solitary waves under complete Coriolis parameters, Acta Oceanol. Sin., 40 (2021), 54–61. https://doi.org/10.1007/s13131-020-1699-5 doi: 10.1007/s13131-020-1699-5
    [25] J. Q. Zhang, R. G. Zhang, L. G. Yang, Q. S. Liu, L. G. Chen, Coherent structures of nonlinear barotropic-baroclinic interaction in unequal depth two-layer model, Appl. Math. Comput., 408 (2021), 126347. https://doi.org/10.1016/j.amc.2021.126347 doi: 10.1016/j.amc.2021.126347
    [26] J. Wang, R. G. Zhang, L. G. Yang, A Gardner evolution equation for topographic Rossby waves and its mechanical analysis, Appl. Math. Comput., 385 (2020), 125426. https://doi.org/10.1016/j.amc.2020.125426 doi: 10.1016/j.amc.2020.125426
    [27] J. Wang, R. G. Zhang, L. G. Yang, Solitary waves of nonlinear barotropic–baroclinic coherent structures, Phys. Fluids, 32 (2020), 096604. https://doi.org/10.1063/5.0025167 doi: 10.1063/5.0025167
    [28] A. J. M. Jawad, New exact solutions of nonlinear partial differential equations using Tan-Cot function method, Stud. Math. Sci., 5 (2012), 13–25.
    [29] W. J. Li, Y. N. Pang, Application of Adomian decomposition method to nonlinear systems, Adv. Differ. Equ., 2020 (2020), 67. https://doi.org/10.1186/s13662-020-2529-y doi: 10.1186/s13662-020-2529-y
    [30] J. H. He, Homotopy perturbation technique, Comput. Method. Appl. Mech. Eng., 178 (1999), 257–262. https://doi.org/10.1016/S0045-7825(99)00018-3 doi: 10.1016/S0045-7825(99)00018-3
    [31] M. Turkyilmazoglu, A note on the homotopy analysis method, Appl. Math. Lett., 23 (2010), 1226–1230. https://doi.org/10.1016/j.aml.2010.06.003 doi: 10.1016/j.aml.2010.06.003
    [32] A. H. A. AliaK, K. R. Raslan, Variational iteration method for solving partial differential equations with variable coefficients, Chaos Soliton. Fract., 40 (2009), 1520–1529. https://doi.org/10.1016/j.chaos.2007.09.031 doi: 10.1016/j.chaos.2007.09.031
    [33] Q. M. Al-Mdallal, M. I. Syam, M. N. Anwar, A collocation-shooting method for solving fractional boundary value problems, Commun. Nonlinear Sci., 15 (2010), 3814–3822. https://doi.org/10.1016/j.cnsns.2010.01.020 doi: 10.1016/j.cnsns.2010.01.020
    [34] H. Naher, F. A. Abdullah, New approach of $(G/G^{'})$-expansion method and new approach of generalized $(G/G^{'})$-expansion method for nonlinear evolution equation, AIP Adv., 3 (2013), 032116. https://doi.org/10.1063/1.4794947 doi: 10.1063/1.4794947
    [35] J. Manafian, M. Foroutan, Application of $\tan(\phi(\tau)/2)$-expansion method for the time-fractional Kuramoto–Sivashinsky equation, Opt. Quant. Electron., 49 (2017), 272. https://doi.org/10.1007/s11082-017-1107-3 doi: 10.1007/s11082-017-1107-3
    [36] N. Maarouf, H. Maadan, K. Hilal, Lie symmetry analysis and explicit solutions for the time-fractional regularized long-wave equation, Int. J. Differ. Equ., 2021 (2021), 6614231. https://doi.org/10.1155/2021/6614231 doi: 10.1155/2021/6614231
    [37] G. Hariharan, K. Kannan, Review of wavelet methods for the solution of reaction–diffusion problems in science and engineering, Appl. Math. Model., 38 (2014), 799–813. https://doi.org/10.1016/j.apm.2013.08.003 doi: 10.1016/j.apm.2013.08.003
    [38] S. Rashid, S. Sultana, R. Ashraf, M. k. A. Kaabar, On comparative analysis for the Black-Scholes model in the generalized fractional derivatives sense via Jafari transform, J. Funct. Space, 2021 (2021), 7767848. https://doi.org/10.1155/2021/7767848 doi: 10.1155/2021/7767848
    [39] P. E. Holloway, E. Pelinovsky, T. Talipova, A generalized Korteweg-de Vries model of internal tide transformation in the coastal zone, J. Geophys Res.-Oceans, 104 (1999), 18333–18350. https://doi.org/10.1029/1999JC900144 doi: 10.1029/1999JC900144
    [40] A. M. Wazwaz, The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients, Cent. Eur. J. Eng., 4 (2014), 64–71. https://doi.org/10.2478/s13531-013-0141-6 doi: 10.2478/s13531-013-0141-6
    [41] Y. A. Stepanyants, Nonlinear waves in a rotating ocean (the Ostrovsky equation and its generalizations and applications), Izv. Atmos. Ocean. Phys., 56 (2020), 16–32. https://doi.org/10.1134/S0001433820010077 doi: 10.1134/S0001433820010077
    [42] S. Rashid, A. Khalid, S. Sultana, Z. Hammouch, R. Shah, A. M. Alsharif, A novel analytical view of time-fractional Korteweg-De Vries equations via a new integral transform, Symmetry, 13 (2021), 1254. https://doi.org/10.3390/sym13071254 doi: 10.3390/sym13071254
    [43] S. Rashid, Z. Hammouch, H. Aydi, A. G. Ahmad, A. M. Alsharif, Novel computations of the time-fractional Fisher's model via generalized fractional integral operators by means of the Elzaki transform, Fractal Fract., 5 (2021), 94. https://doi.org/10.3390/fractalfract5030094 doi: 10.3390/fractalfract5030094
    [44] S. Rashid, K. T. Kubra, J. L. G. Guirao, Construction of an approximate analytical solution for multi-dimensional fractional Zakharov-Kuznetsov equation via Aboodh Adomian decomposition method, Symmetry, 13 (2021), 1542. https://doi.org/10.3390/sym13081542 doi: 10.3390/sym13081542
    [45] H. Jafari, A new general integral transform for solving integral equations, J. Adv. Res., 32 (2021), 133–138. https://doi.org/10.1016/j.jare.2020.08.016 doi: 10.1016/j.jare.2020.08.016
    [46] L. Debnath, D. Bhatta, Integral transforms and their applications, Boca Raton: CRC Press, 2014.
    [47] F. Jarad, T. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Res. Nonlinear Anal., 1 (2018), 88–98.
    [48] G. K. Watugala, Sumudu transform: A new integral transform to solve differential equations and control engineering problems, Int. J. Math. Edu. Sci. Technol., 24 (1993), 35–43. https://doi.org/10.1080/0020739930240105 doi: 10.1080/0020739930240105
    [49] K. S. Aboodh, The new integral transform Aboodh transform. Glob. J. Pure Appl. Math., 9 (2013), 35–43.
    [50] S. A. P. Ahmadi, H. Hosseinzadeh, A. Y. Cherati, A new integral transform for solving higher order ordinary differential equations, Nonlinear Dyn. Syst. Theory, 19 (2019), 243–252.
    [51] S. A. P. Ahmadi, H. Hosseinzadeh, A. Y. Cherati, A new integral transform for solving higher order linear ordinary Laguerre and Hermite differential equations, Int. J. Appl. Comput. Math., 5 (2019), 142. https://doi.org/10.1007/s40819-019-0712-1 doi: 10.1007/s40819-019-0712-1
    [52] T. M. Elzaki, The new integral transform Elzaki transform, Global. J. Pure Appl. Math., 7 (2011), 57–64.
    [53] Z. H. Khan, W. A. Khan, N-transform properties and applications, NUST. J. Eng. Sci., 1 (2008), 127–133.
    [54] M. M. A. Mahgoub, The new integral transform "Mohand Transform", Adv. Theor. Appl. Math., 12 (2017), 113–120.
    [55] M. M. A. Mahgoub, The new integral transform "Sawi Transform", Adv Theor. Appl. Math., 14 (2019), 81–87.
    [56] A. Kamal, H. Sedeeg, The new integral transform "Kamal Transform", Adv. Theor. Appl. Math. 11 (2016), 451–458.
    [57] H. Kim, On the form and properties of an integral transform with strength in integral transforms, FJMS, 102 (2017), 2831–2844. http://doi.org/10.17654/MS102112831 doi: 10.17654/MS102112831
    [58] H. Kim, The intrinsic structure and properties of Laplace-typed integral transforms, Math. Probl. Eng., 2017 (2017), 1762729. https://doi.org/10.1155/2017/1762729 doi: 10.1155/2017/1762729
    [59] M. Meddahi, H. Jafari, M. N. Ncube, New general integral transform via Atangana–Baleanu derivatives, Adv. Differ. Equ., 2021 (2021), 385. https://doi.org/10.1186/s13662-021-03540-4 doi: 10.1186/s13662-021-03540-4
    [60] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, 2016, arXiv: 1602.03408.
    [61] A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos Soliton Fract., 89 (2016), 447–454. https://doi.org/10.1016/j.chaos.2016.02.012 doi: 10.1016/j.chaos.2016.02.012
    [62] M. Yavuz, T. Abdeljawad, Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivative with power and Mittag-Leffler kernel, Adv. Differ. Equ., 2020 (2020), 367. https://doi.org/10.1186/s13662-020-02828-1 doi: 10.1186/s13662-020-02828-1
    [63] A. Bokhari, D. Baleanu, R. Belgacema, Application of Shehu transform to Atangana–Baleanu derivatives, J. Math. Comput. Sci., 20 (2020), 101–107. https://doi.org/10.22436/jmcs.020.02.03 doi: 10.22436/jmcs.020.02.03
    [64] M. G. Mittag-Leffler, Sur la nouvelle fonction Ea(x), Paris: C. R. Academy of Science, 1903.
    [65] G. Adomian, R. Rach, Modified Adomian polynomial, Math. Comput. Model., 24 (1996), 39–46. https://doi.org/10.1016/S0895-7177(96)00171-9 doi: 10.1016/S0895-7177(96)00171-9
    [66] A. V. Slunyaev, E. N. Pelinovsky, Role of multiple soliton interactions in the generation of rogue waves: The modified Korteweg-de Vries framework, Phys. Rev. Lett., 117 (2016), 214501. https://doi.org/10.1103/PhysRevLett.117.214501 doi: 10.1103/PhysRevLett.117.214501
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1561) PDF downloads(118) Cited by(12)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog