Research article

Weighted boundedness of multilinear integral operators for the endpoint cases

  • Received: 07 October 2021 Revised: 17 December 2021 Accepted: 27 December 2021 Published: 10 January 2022
  • MSC : 42B20, 42B25

  • We prove the weighted boundedness for the multilinear operators associated to some integral operators for the endpoint cases. The operators include Littlewood-Paley operators, Marcinkiewicz operators and Bochner-Riesz operator.

    Citation: Ancheng Chang. Weighted boundedness of multilinear integral operators for the endpoint cases[J]. AIMS Mathematics, 2022, 7(4): 5690-5711. doi: 10.3934/math.2022315

    Related Papers:

  • We prove the weighted boundedness for the multilinear operators associated to some integral operators for the endpoint cases. The operators include Littlewood-Paley operators, Marcinkiewicz operators and Bochner-Riesz operator.



    加载中


    [1] J. Alvarez, R. J. Babgy, D. S. Kurtz, C. Pérez, Weighted estimates for commutators of linear operators, Studia Math., 104 (1993), 195–209.
    [2] M. Bownik, Boundedness of operators on Hardy spaces via atomic decompositions, Proc. Amer. Math. Soc., 133 (2005), 3535–3542. https://doi.org/10.1090/S0002-9939-05-07892-5 doi: 10.1090/S0002-9939-05-07892-5
    [3] W. G. Chen, G. E. Hu, Weak type ($H^1$, $L^1$) estimate for multilinear singular integral operator, Adv. Math., 30 (2001), 63–69.
    [4] J. Cohen, A sharp estimate for a multilinear singular integral on $R^n$, Indiana U. Math. J., 30 (1981), 693–702.
    [5] J. Cohen, J. Gosselin, A BMO estimate for multilinear singular integral, Illinois J. Math., 30 (1986), 445–464.
    [6] R. R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611–635. https://doi.org/10.2307/1970954 doi: 10.2307/1970954
    [7] J. Garcia-Cuerva, M. L. Herrero, A theory of Hardy spaces associated to the Herz spaces, P. Lond. Math. Soc., 69 (1994), 605–628. https://doi.org/10.1112/plms/s3-69.3.605 doi: 10.1112/plms/s3-69.3.605
    [8] J. Garcia-Cuerva, J. R. de Francia, Weighted norm inequalities and related topics, 1985.
    [9] E. Harboure, C. Segovia, J. L. Torrea, Boundedness of commutators of fractional and singular integrals for the extreme values of $p$, Illinois J. Math., 41 (1997), 676–700.
    [10] E. Hernandez, G. Weiss, D. C. Yang, The $\phi$-transform and wavelet characterizations of Herz-type spaces, Collect. Math., 47 (1996), 285–320.
    [11] E. Hernandez, D. C. Yang, Interpolation of Herz-type Hardy spaces, Illinois J. Math., 42 (1998), 564–581.
    [12] L. Z. Liu, Weighted weak type ($H^1$, $L^1$) estimates for commutators of Littlewood-Paley operator, Indian J. Math., 45 (2003), 71–78.
    [13] L. Z. Liu, Weighted endpoint estimates for multilinear Littlewood-Paley operators, Acta Math. Univ. Comenianae, 73 (2004), 55–67.
    [14] S. Z. Lu, Four lectures on real $H^p$ spaces, NI: World Scientific, River Edge, 1995.
    [15] S. Z. Lu, D. C. Yang, The decomposition of the weighted Herz spaces on $R^{n}$ and its applications, Chinese Sci. Abstr. Ser. A, 38 (1995), 147–158.
    [16] S. Z. Lu, D. C. Yang, The weighted Herz type Hardy spaces and its applications, Chinese Sci. Abstr. Ser. A, 38 (1995), 662–673.
    [17] B. H. Qui, Weighted Hardy spaces, Math. Nachr., 103 (1981), 45–62.
    [18] E. M. Stein, T. S. Murphy, Harmonic Analysis: real variable methods, orthogonality and oscillatory integrals, Princeton: Princeton University Press, 1993.
    [19] A. Torchinsky, Real variable methods in harmonic analysis, New York: Academic Press, 1986.
    [20] A. Torchinsky, S. Wang, A note on the Marcinkiewicz integral, Colloq. Math., 60/61 (1990), 235–243.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1599) PDF downloads(68) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog