Research article

An existence theorem for nonlinear functional Volterra integral equations via Petryshyn's fixed point theorem

  • Received: 11 October 2021 Revised: 06 December 2021 Accepted: 13 December 2021 Published: 10 January 2022
  • MSC : 47H10

  • Using the method of Petryshyn's fixed point theorem in Banach algebra, we investigate the existence of solutions for functional integral equations, which involves as specific cases many functional integral equations that appear in different branches of non-linear analysis and their applications. Finally, we recall some particular cases and examples to validate the applicability of our study.

    Citation: Soniya Singh, Satish Kumar, Mohamed M. A. Metwali, Saud Fahad Aldosary, Kottakkaran S. Nisar. An existence theorem for nonlinear functional Volterra integral equations via Petryshyn's fixed point theorem[J]. AIMS Mathematics, 2022, 7(4): 5594-5604. doi: 10.3934/math.2022309

    Related Papers:

  • Using the method of Petryshyn's fixed point theorem in Banach algebra, we investigate the existence of solutions for functional integral equations, which involves as specific cases many functional integral equations that appear in different branches of non-linear analysis and their applications. Finally, we recall some particular cases and examples to validate the applicability of our study.



    加载中


    [1] J. Banas, K. Goebel, Measures of noncompactness in Banach spaces, Marcel Dekker, New York, 1980.
    [2] M. Cichoń, M. Metwali, On monotonic integrable solutions for quadratic functional integral equations, Mediterr. J. Math., 10 (2013), 909–926. https://doi.org/10.1007/s00009-012-0218-0 doi: 10.1007/s00009-012-0218-0
    [3] S. Chandrasekhar, Radiative transfer, Oxford Univ. Press, London, 1950.
    [4] C. Corduneanu, Integral equations and applications, Cambridge University Press, New York, 1990.
    [5] A. Deep, Deepmala, J. R. Roshan, Solvability for generalized non-linear integral equations in Banach spaces with applications, J. Integral Equ. Appl., 33 (2021), 19–30.
    [6] A. Deep, Deepmala, M. Rabbani, A numerical method for solvability of some non-linear functional integral equations, Appl. Math. Comput., 402 (2021), 125–637.
    [7] A. Deep, Deepmala, R. Ezzati, Application of Petryshyn's fixed point theorem to solvability for functional integral equations, Appl. Math. Comput., 395 (2021), 125878. https://doi.org/10.1016/j.amc.2020.125878 doi: 10.1016/j.amc.2020.125878
    [8] A. Deep, D. Dhiman, S. Abbas, B. Hazarika, Solvability for two dimensional functional integral equations via Petryshyn's fixed point theorem, RACSAM Rev. R. Acad. A, 115 (2021).
    [9] A. Deep, Deepmala, B. Hazarika, An existence result for Hadamard type two dimensional fractional functional integral equations via measure of noncompactness, Chaos Soliton. Fract., 147 (2021), 110874. https://doi.org/10.1016/j.chaos.2021.110874 doi: 10.1016/j.chaos.2021.110874
    [10] K. Deimling, Nonlinear functional analysis, Springer-Verlag, 1985. https://doi.org/10.1007/978-3-662-00547-7
    [11] S. Deng, X. B. Shu, J. Mao, Existence and exponential stability for impulsive neutral stochastic functional differential equations driven by fBm with noncompact semigroup via Mönch fixed point, J. Math. Anal. Appl., 467 (2018), 398–420. https://doi.org/10.1016/j.jmaa.2018.07.002 doi: 10.1016/j.jmaa.2018.07.002
    [12] B. C. Dhage, On $\alpha$-condensing mappings in Banach algebras, Math. Stud., 63 (1994), 146–152.
    [13] B. C. Dhage, V. Lakshmikantham, On global existence and attractivity results for nonlinear functional integral equations, Nonlinear Anal.-Theor., 70 (2010), 2219–2227. https://doi.org/10.1016/j.na.2009.10.021 doi: 10.1016/j.na.2009.10.021
    [14] Y. Guo, M. Chen, X. B. Shu, F. Xu, The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm, Stoch. Anal. Appl., 39 (2021). https://doi.org/10.1080/07362994.2020.1824677 doi: 10.1080/07362994.2020.1824677
    [15] Y. Guo, X. B. Shu, Y. Li, F. Xu, The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order $1 < \beta < 2$, Bound. Value Probl., 2019 (2019).
    [16] B. Hazarika, H. M. Srivastava, R. Arab, M. Rabbani, Application of simulation function and measure of noncompactness for solvability of nonlinear functional integral equations and introduction to an iteration algorithm to find solution, Appl. Math. Comput., 360 (2019), 131–146. https://doi.org/10.1016/j.amc.2019.04.058 doi: 10.1016/j.amc.2019.04.058
    [17] B. Hazarika, R. Arab, H. K. Nashine, Applications of measure of noncompactness and modified simulation function for solvability of nonlinear functional integral equations, Filomat, 33 (2019), 5427–5439. https://doi.org/10.2298/FIL1917427H doi: 10.2298/FIL1917427H
    [18] S. Hu, M. Khavanin, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989), 261–266.
    [19] M. Kazemi, R. Ezzati, Existence of solutions for some nonlinear Volterra integral equations via Petryshyn's fixed point theorem, Int. J. Anal. Appl., 9 (2018).
    [20] C. T. Kelly, Approximation of solutions of some quadratic integral equations in transport theory, J. Integral Equ., 4 (1982), 221–237.
    [21] K. Maleknejad, K. Nouri, R. Mollapourasl, Existence of solutions for some nonlinear integral equations, Commun. Nonlinear Sci., 14 (2009), 2559–2564. https://doi.org/10.1016/j.cnsns.2008.10.019 doi: 10.1016/j.cnsns.2008.10.019
    [22] K. Maleknejad, K. Nouri, R. Mollapourasl, Investigation on the existence of solutions for some nonlinear functional-integral equations, Nonlinear Anal.-Theor., 71 (2009), 1575–1578.
    [23] M. Metwali, K. Cichoń, On solutions of some delay Volterra integral problems on a half line, Nonlinear Anal.-Model., 26 (2021), 661–677. https://doi.org/10.15388/namc.2021.26.24149 doi: 10.15388/namc.2021.26.24149
    [24] M. Metwali, On a class of quadratic Uryshon-Hammerstein integral equations of mixed-type and initial value problem of fractional order, Mediterr. J. Math., 13 (2016), 2691–2707. https://doi.org/10.1007/s00009-015-0647-7 doi: 10.1007/s00009-015-0647-7
    [25] H. Nashine, R. Arab, R. Agarwal, Existence of solutions of system of functional-integral equations using measure of noncompactness, Int. J. Nonlinear Anal., 12 (2021), 583–595.
    [26] H. Nashine, R. Ibrahim, R. Agarwal, N. Can, Existence of local fractional integral equation via a measure of non-compactness with monotone property on Banach spaces, Adv. Differ. Equ., 2020 2020,697. https://doi.org/10.1186/s13662-020-03153-3 doi: 10.1186/s13662-020-03153-3
    [27] R. D. Nussbaum, The fixed point index and fixed point theorem for k set contractions, Proquest LLC, Ann Arbor, MI, 1969.
    [28] I. Ozdemir, U. Cakan, B. Iihan, On the existence of the solution for some noninear Volterra integral equations, Abstr. Appl. Anal., 5 (2013).
    [29] W. V. Petryshyn, Structure of the fixed points sets of k-set-contractions, Arch. Ration. Mech. An., 40 (1971), 312–328. https://doi.org/10.1007/BF00252680 doi: 10.1007/BF00252680
    [30] M. Rabbani, A. Deep, Deepmala, On some generalized non-linear functional integral equations of two variables via measures of non-compactness and numerical method to solve it, Math. Sci., 2021.
    [31] S. Singh, B. Singh, K. S. Nisar, A. Hyder, M. Zakarya, Solvability for generalized nonlinear two dimensional functional integral equations via measure of noncompactness, Adv. Differ. Equ., 2021 (2021). https://doi.org/10.1186/s13662-021-03506-6 doi: 10.1186/s13662-021-03506-6
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1964) PDF downloads(138) Cited by(5)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog