Research article Special Issues

The random convolution sampling stability in multiply generated shift invariant subspace of weighted mixed Lebesgue space

  • Received: 18 May 2021 Accepted: 25 October 2021 Published: 01 November 2021
  • MSC : 94A20

  • In this paper, we mainly investigate the random convolution sampling stability for signals in multiply generated shift invariant subspace of weighted mixed Lebesgue space. Under some restricted conditions for the generators and the convolution function, we conclude that the defined multiply generated shift invariant subspace could be approximated by a finite dimensional subspace. Furthermore, with overwhelming probability, the random convolution sampling stability holds for signals in some subset of the defined multiply generated shift invariant subspace when the sampling size is large enough.

    Citation: Suping Wang. The random convolution sampling stability in multiply generated shift invariant subspace of weighted mixed Lebesgue space[J]. AIMS Mathematics, 2022, 7(2): 1707-1725. doi: 10.3934/math.2022098

    Related Papers:

  • In this paper, we mainly investigate the random convolution sampling stability for signals in multiply generated shift invariant subspace of weighted mixed Lebesgue space. Under some restricted conditions for the generators and the convolution function, we conclude that the defined multiply generated shift invariant subspace could be approximated by a finite dimensional subspace. Furthermore, with overwhelming probability, the random convolution sampling stability holds for signals in some subset of the defined multiply generated shift invariant subspace when the sampling size is large enough.



    加载中


    [1] A. Aldroubi, K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant space, SIAM Rev., 43 (2001), 585–620. doi: 10.1137/s0036144501386986. doi: 10.1137/s0036144501386986
    [2] R. F. Bass, K. Gröchenig, Random sampling of bandlimited functions, Israel J. Math., 177 (2010), 1–28. doi: 10.1007/s11856-010-0036-7. doi: 10.1007/s11856-010-0036-7
    [3] R. F. Bass, K. Gröchenig, Relevant sampling of bandlimited functions, Illinois J. Math., 57 (2013), 43–58. doi: 10.1215/ijm/1403534485. doi: 10.1215/ijm/1403534485
    [4] A. Benedek, R. Panzone, The space $L^{p}$ with mixed norm, Duke Math. J., 28 (1961), 301–324. doi: 10.1215/s0012-7094-61-02828-9. doi: 10.1215/s0012-7094-61-02828-9
    [5] E. J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, 52 (2006), 489–509. doi: 10.1109/TIT.2005.862083. doi: 10.1109/TIT.2005.862083
    [6] S. H. Chan, T. Zickler, Y. M. Lu, Monte Carlo non-local means: Random sampling for large-scale image filtering, IEEE Trans. Image Process., 23 (2014), 3711–3725. doi: 10.1109/tip.2014.2327813. doi: 10.1109/tip.2014.2327813
    [7] Y. C. Eldar, Compressed sensing of analog signal in a shift-invariant spaces, IEEE Trans. Signal Process., 57 (2009), 2986–2997. doi: 10.1109/TSP.2009.2020750. doi: 10.1109/TSP.2009.2020750
    [8] K. Gröchenig, Weight functions in time-frequency analysis, 2006. Available from: https://arXiv.org/abs/math/0611174.
    [9] Y. Han, B. Liu, Q. Y. Zhang, A sampling theory for non-decaying signals in mixed Lebesgue spaces $L^{p, q}(\mathbb{R}\times \mathbb{R}^{d})$, Appl. Anal., 2020. doi: 10.1080/00036811.2020.1736286.
    [10] Y. C. Jiang, W. Li, Random sampling in multiply generated shift-invariant subspaces of mixed Lebesgue spaces $L^{p, q}(\mathbb{R}\times \mathbb{R}^{d})$, J. Comput. Appl. Math., 386 (2021), 113237. doi: 10.1016/j.cam.2020.113237.
    [11] A. Kumar, D. Patel, S. Sampath, Sampling and reconstruction in reproducing kernel subspaces of mixed Lebesgue spaces, J. Pseudo-Differ. Oper. Appl., 11 (2020), 843–868. doi: 10.1007/s11868-019-00315-0. doi: 10.1007/s11868-019-00315-0
    [12] R. Li, B. Liu, R. liu, Q. Y. Zhang, Nonuniform sampling in principle shift-invariant subspaces of mixed Lebesgue spaces $L^{p, q}(\mathbb{R}^{d+1})$, J. Math. Anal. Appl., 453 (2017), 928–941. doi: 10.1016/j.jmaa.2017.04.036. doi: 10.1016/j.jmaa.2017.04.036
    [13] R. Li, B. Liu, R. Liu, Q. Y. Zhang, The $L^{p, q}$-stability of the shifts of finitely many functions in mixed Lebesgue spaces $L^{p, q}(\mathbb{R}^{d+1})$, Acta Math. Sin., Engl. Ser., 34 (2018), 1001–1014. doi: 10.1007/s10114-018-7333-1. doi: 10.1007/s10114-018-7333-1
    [14] Y. X. Li, Q. Y. Sun, J. Xian, Random sampling and reconstruction of concentrated signals in a reproducing kernel space, Appl. Comput. Harmon. Anal., 54 (2021), 273–302. doi: 10.1016/j.acha.2021.03.006. doi: 10.1016/j.acha.2021.03.006
    [15] S. P. Luo, Error estimation for non-uniform sampling in shift invariant space, Appl. Anal., 86 (2007), 483–496. doi: 10.1080/00036810701259236. doi: 10.1080/00036810701259236
    [16] D. Patel, S. Sampath, Random sampling in reproducing kernel subspaces of $L^{p}(\mathbb{R}^{n})$, J. Math. Anal. Appl., 491 (2020), 124270. doi: 10.1016/j.jmaa.2020.124270.
    [17] S. Smale, D. X. Zhou, Online learning with Markov sampling, Anal. Appl., 7 (2009), 87–113. doi: 10.1142/S0219530509001293. doi: 10.1142/S0219530509001293
    [18] J. B. Yang, Random sampling and reconstruction in multiply generated shift-invariant spaces, Anal. Appl., 17 (2019), 323–347. doi: 10.1142/S0219530518500185. doi: 10.1142/S0219530518500185
    [19] J. B. Yang, W. Wei, Random sampling in shift invariant spaces, J. Math. Anal. Appl., 398 (2013), 26–34. doi: 10.1016/j.jmaa.2012.08.030. doi: 10.1016/j.jmaa.2012.08.030
    [20] D. X. Zhou, The covering number in learning theory, J. Complexity, 18 (2002), 739–767. doi: 10.1006/jcom.2002.0635. doi: 10.1006/jcom.2002.0635
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1877) PDF downloads(75) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog