In this paper, the maximal and minimal iterative positive solutions are investigated for a singular Hadamard fractional differential equation boundary value problem with a boundary condition involving values at infinite number of points. Green's function is deduced and some properties of Green's function are given. Based upon these properties, iterative schemes are established for approximating the maximal and minimal positive solutions.
Citation: Limin Guo, Lishan Liu, Ying Wang. Maximal and minimal iterative positive solutions for $ p $-Laplacian Hadamard fractional differential equations with the derivative term contained in the nonlinear term[J]. AIMS Mathematics, 2021, 6(11): 12583-12598. doi: 10.3934/math.2021725
In this paper, the maximal and minimal iterative positive solutions are investigated for a singular Hadamard fractional differential equation boundary value problem with a boundary condition involving values at infinite number of points. Green's function is deduced and some properties of Green's function are given. Based upon these properties, iterative schemes are established for approximating the maximal and minimal positive solutions.
[1] | B. Ahmad, A. Alsaedi, S. K. Ntouya, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Springer International Publishing, 2017. |
[2] | B. Ahmad, M. Alghanmi, J. J. Nieto, A. Alsaedi, On impulsive nonlocal integro-initial value problems involving multi-order caputo-type generalized fractional derivatives and generalized fractional integrals, Adv. Differ. Equations, 2019 (2019), 1-20. doi: 10.1186/s13662-018-1939-6 |
[3] | A. Alsaedi, B. Ahmad, M. Alghanmi, Extremal solutions for generalized caputo fractional differential equations with steiltjes-type fractional integro-initial conditions, Appl. Math. Lett., 91 (2019), 113-120. doi: 10.1016/j.aml.2018.12.006 |
[4] | B. Ahmad, S. K. Ntouyas, J. Tariboon, A study of mixed hadamard and riemann-liouville fractional integro-differential inclusions via endpoint theory, Appl. Math. Lett., 52 (2016), 9-14. doi: 10.1016/j.aml.2015.08.002 |
[5] | A. Cabada, Z. Hamdi, Nonlinear fractional differential equations with integral boundary value conditions, Appl. Math. Comput., 228 (2014), 251-257. |
[6] | L. M. Guo, L. S. Liu, Maximal and minimal iterative positive solutions for singular infinite-point p-laplacian fractional differential equations, Nonlinear Anal: Model. Control, 23 (2018), 851-865. doi: 10.15388/NA.2018.6.3 |
[7] | L. M. Guo, L. S. Liu, Y. Q. Feng, Uniqueness of iterative positive solutions for the singular infinite-point p-laplacian fractional differential system via sequential technique, Nonlinear Anal: Model. Control, 25 (2020), 786-805. |
[8] | L. M. Guo, L. S. Liu, Y. H. Wu, Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions, Nonlinear Anal: Model. Control, 21 (2016), 635-650. doi: 10.15388/NA.2016.5.5 |
[9] | L. M. Guo, L. S. Liu, Y. H. Wu, Existence of positive solutions for singular higher-order fractional differential equations with infinite-point boundary conditions, Bound. Value Probl., 2016 (2016), 114. doi: 10.1186/s13661-016-0621-8 |
[10] | L. M. Guo, L. S. Liu, Y. H. Wu, Uniqueness of iterative positive solutions for the singular fractional differential equations with integral boundary conditions, Bound. Value Probl., 2016 (2016), 147. doi: 10.1186/s13661-016-0652-1 |
[11] | L. M. Guo, L. S. Liu, Y. H. Wu, Iterative unique positive solutions for singular p-laplacian fractional differential equation system with several parameters, Nonlinear Anal: Model. Control, 23 (2018), 182-203. doi: 10.15388/NA.2018.2.3 |
[12] | M. Jleli, B. Samet, Existence of positive solutions to an arbitrary order fractional differential equation via a mixed monotone operator method, Nonlinear Anal: Model. Control, 20 (2015), 367-376. doi: 10.15388/NA.2015.3.4 |
[13] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science BV, 2006. |
[14] | V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal.: Theory Methods Appl., 69 (2008), 2677-2682. doi: 10.1016/j.na.2007.08.042 |
[15] | Y. J. Liu, New existence results on nonhomogeneous Sturm-Liouville type BVPs for higher-order $p$-Laplacian differential equations, Applicationes Math., 38 (2011), 295-314. doi: 10.4064/am38-3-3 |
[16] | H. L. Lu, Z. L. Han, C. Zhang, Y. Zhao, Positive solutions for boundary value problem of nonlinear fractional differential equation with $p$-laplacian operator, In: I. Dimov, I. Faragó, L. Vulkov, Finite difference methods, theory and applications, Lecture Notes in Computer Science, Cham: Springer, 9045 (2014), 274-281. |
[17] | D. X. Ma, Positive solutions of multi-point boundary value problem of fractional differential equation, Arab J. Math. Sci., 21 (2015), 225-236. |
[18] | J. F. Qin, G. T. Wang, L. H. Zhang, B. Ahmad, Monotone iterative method for a p-laplacian boundary value problem with fractional conformable derivatives, Bound. Value Probl., 2019 (2019), 145. doi: 10.1186/s13661-019-1254-5 |
[19] | P. Thiramanus, S. K. Ntouyas, J. Tariboon, Positive solutions for hadamard fractional differential equations on infinite domain, Adv. Differ. Equations, 2016 (2016), 83. doi: 10.1186/s13662-016-0813-7 |
[20] | G. T. Wang, T. L. Wang, On a nonlinear hadamard type fractional differential equation with p-laplacian operator and strip condition, J. Nonlinear Sci. Appl., 9 (2016), 5073-5081. doi: 10.22436/jnsa.009.07.10 |
[21] | J. F. Xu, J. Q. Jiang, D. O'Regan, Positive solutions for a class of p-laplacian hadamard fractional-order three-point boundary value problems, Mathematics, 8 (2020), 308. doi: 10.3390/math8030308 |
[22] | W. Yukunthorn, B. Ahmad, S. K. Ntouyas, J. Tariboon, On caputo-hadamard type fractional impulsive hybrid systems with nonlinear fractional integral conditions, Nonlinear Anal: Hybrid Syst., 19 (2016), 77-92. doi: 10.1016/j.nahs.2015.08.001 |
[23] | X. Q. Zhang, Positive solutions for a class of singular fractional differential equation with infinite-point boundary value conditions, Appl. Math. Lett., 39 (2015), 22-27. doi: 10.1016/j.aml.2014.08.008 |