Research article

Multiple entire solutions of fractional Laplacian Schrödinger equations

  • Received: 19 February 2021 Accepted: 19 May 2021 Published: 04 June 2021
  • MSC : 35A01, 35B08, 35J61

  • We consider the semi-linear fractional Schrödinger equation

    $ \begin{align*} \begin{cases} (-\Delta)^s u+V(x)u = f(x,u), \; \; \; x\in \mathbb{R}^N ,\\ u\in H^{s}(\mathbb {R}^N) , \\ \end{cases} \end{align*} $

    where both $ V(x) $ and $ f(x, u) $ are periodic in $ x $, $ 0 $ belongs to a spectral gap of the operator $ (-\Delta)^s+V $ and $ f(x, u) $ is subcritical in $ u $. We obtain the existence of nontrivial solutions by using a generalized linking theorem, and based on this existence we further establish infinitely many geometrically distinct solutions. We weaken the super-quadratic condition of $ f $, which is usually assumed even in the standard Laplacian case so as to obtain the existence of solutions.

    Citation: Jian Wang, Zhuoran Du. Multiple entire solutions of fractional Laplacian Schrödinger equations[J]. AIMS Mathematics, 2021, 6(8): 8509-8524. doi: 10.3934/math.2021494

    Related Papers:

  • We consider the semi-linear fractional Schrödinger equation

    $ \begin{align*} \begin{cases} (-\Delta)^s u+V(x)u = f(x,u), \; \; \; x\in \mathbb{R}^N ,\\ u\in H^{s}(\mathbb {R}^N) , \\ \end{cases} \end{align*} $

    where both $ V(x) $ and $ f(x, u) $ are periodic in $ x $, $ 0 $ belongs to a spectral gap of the operator $ (-\Delta)^s+V $ and $ f(x, u) $ is subcritical in $ u $. We obtain the existence of nontrivial solutions by using a generalized linking theorem, and based on this existence we further establish infinitely many geometrically distinct solutions. We weaken the super-quadratic condition of $ f $, which is usually assumed even in the standard Laplacian case so as to obtain the existence of solutions.



    加载中


    [1] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. doi: 10.1016/0022-1236(73)90051-7
    [2] T. Bartsch, Y. H. Ding, On a nonlinear Schrödinger equation with periodic potential, Math. Ann., 313 (1999), 15–37. doi: 10.1007/s002080050248
    [3] T. Bartsch, Z. Q. Wang, Existence and muitipliticity results for some superlinear elliptic problem on $\mathbb R^N$, Commun. Part. Diff. Eq., 20 (1995), 1725–1741. doi: 10.1080/03605309508821149
    [4] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245–1260. doi: 10.1080/03605300600987306
    [5] G. W. Chen, S. W. Ma, Asymptotically or super linear cooperative elliptic systems in the whole space, Sci. China Math., 56 (2013), 1181–1194. doi: 10.1007/s11425-013-4567-3
    [6] V. Coti. Zelati, P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693–727. doi: 10.1090/S0894-0347-1991-1119200-3
    [7] V. C. Zelati, P. H. Rabinowitz, Homoniclinic type solutions for a semilinear elliptic PDE on $\mathbb R^N$, Commun. Pure Appl. Math., 45 (1992), 1217–1269. doi: 10.1002/cpa.3160451002
    [8] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhikeri's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. doi: 10.1016/j.bulsci.2011.12.004
    [9] Y. H. Ding, C. Lee, Multiple solutions of Schrödinger equations with infinite linear part and super or asymptotially linear terms, J. Differ. Equations., 222 (2006), 137–163. doi: 10.1016/j.jde.2005.03.011
    [10] Z. R. Du, C. F. Gui, Further study on periodic solutions of elliptic equations with a fractional Laplacian, Nonlinear Anal., 193 (2020), 111417. doi: 10.1016/j.na.2019.01.007
    [11] F. Fang, C. Ji, On a fractional Schrödinger equation with periodic potential, Comput. Math. Appl., 78 (2019), 1517–1530. doi: 10.1016/j.camwa.2019.03.044
    [12] Z. P. Feng, Z. R. Du, Periodic solutions of Non-autonomous Allen-Cahn Equations involving fractional Laplacian, Adv. Nonlinear Stud., 20 (2020), 725–737. doi: 10.1515/ans-2020-2075
    [13] F. S. Gao, M. B. Yang, A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality, Commun. Contemp. Math., 20 (2018), 1750037. doi: 10.1142/S0219199717500377
    [14] C. F. Gui, J. Zhang, Z. R. Du, Periodic solutions of a semilinear elliptic equation with a fractional Laplacian, J. Fixed Point Theory Appl., 19 (2017), 363–373. doi: 10.1007/s11784-016-0357-1
    [15] W. Kryszewski, A. Szulkin, Generalized linking theorem with application semilinear Schrödinger equation, Adv. Differ, Equations, 3 (1998), 441–472.
    [16] N. Laskin, Fractional quantum mechsnics and Lévy path integrals, Phys. Lett. A., 268 (2002), 298–305.
    [17] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108
    [18] G. B. Li, A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763–776. doi: 10.1142/S0219199702000853
    [19] S. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Dif., 45 (2012), 1–9. doi: 10.1007/s00526-011-0447-2
    [20] Y. Li, Z. Wang, J. Zeng, Ground States of nonlinear Schrödinger equations with potentials, Annales de l'I.H.P. Analyse Non Linéaire, 23 (2006), 829–837.
    [21] Z. L. Liu, Z. Q. Wang, On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud., 4 (2004), 563–574.
    [22] A. Pankov, Peridic nonlinear Schrödinger equation with application to photonic crystals, Milian J. Math., 73 (2005), 259–287. doi: 10.1007/s00032-005-0047-8
    [23] P. H. Rabinowitz, On a class of nonliear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270–291. doi: 10.1007/BF00946631
    [24] M. Schechter, Superlinear Schrödinger operators, J. Funct. Anal., 262 (2012), 2677–2694. doi: 10.1016/j.jfa.2011.12.023
    [25] A. Szulki, T. Weth, Ground state solution for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802–3822. doi: 10.1016/j.jfa.2009.09.013
    [26] X. H. Tang, Non-Nehair manifold method for asympotically a periodic Schrödinger equations, Sci. China Math., 58 (2015), 715–728.
    [27] X. H. Tang, S. T. Chen, X. Y. Lin, J. S. Yu, Ground state solutions of Nehari-Pankov type for Schrödinger equations with local supper-quadratic conditions, J. Differ. Equations., 268 (2020), 4663–4690. doi: 10.1016/j.jde.2019.10.041
    [28] X. H. Tang, X. Y. Lin, J. S. Yu, Nontrivial solution for Schrödinger equation with local super-quadratic conditions, J. Dyn. Diff. Equat., 31 (2019), 369–383. doi: 10.1007/s10884-018-9662-2
    [29] C. Troestler, M. Willem, Nontrivial solution of a semilinear Schrödinger equation, Commun. Part. Diff. Eq., 21 (1996), 1431–1449. doi: 10.1080/03605309608821233
    [30] M. B. Yang, Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities, Nonlinear Anal., 72 (2010), 2620–2627. doi: 10.1016/j.na.2009.11.009
    [31] M. B. Yang, Existence of semiclassical solutions for some critical Schrödinger-Poisson equations with potentials, Nonlinear Anal., 198 (2020), 111874. doi: 10.1016/j.na.2020.111874
    [32] J. Zhang, W. M. Zou, The critical cases for a Berestyski-Lions theorem, Sci. China Math., 57 (2014), 541–554. doi: 10.1007/s11425-013-4687-9
    [33] X. X. Zhou, W. M. Zou, Ground state and muitiple solutions via generalized Nehair manifold, Nonlinear Anal., 102 (2014), 251–263. doi: 10.1016/j.na.2014.02.018
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2655) PDF downloads(138) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog