Research article Special Issues

The existence of sign-changing solutions for Schrödinger-Kirchhoff problems in $ \mathbb{R}^3 $

  • Received: 06 March 2021 Accepted: 12 April 2021 Published: 20 April 2021
  • MSC : 35J20, 35J60

  • In this paper, we consider the following Kirchhoff-type equation:

    $ -\left(a+b\int_{ \mathbb{R}^3}|\nabla u|^2dx\right)\Delta u+u = |u|^{p-1}u,\quad {\rm{in }}\; \mathbb{R}^3, $

    where $ a $, $ b > 0 $, $ p \in (1, 5) $. By considering a minimization problem on a special constraint set, we prove that the above problem has at least one sign-changing solution for any $ p \in (1, 5) $. Our results (especially $ p \in (1, 3] $) can be regarded as an improvement on the existing results.

    Citation: Ting Xiao, Yaolan Tang, Qiongfen Zhang. The existence of sign-changing solutions for Schrödinger-Kirchhoff problems in $ \mathbb{R}^3 $[J]. AIMS Mathematics, 2021, 6(7): 6726-6733. doi: 10.3934/math.2021395

    Related Papers:

  • In this paper, we consider the following Kirchhoff-type equation:

    $ -\left(a+b\int_{ \mathbb{R}^3}|\nabla u|^2dx\right)\Delta u+u = |u|^{p-1}u,\quad {\rm{in }}\; \mathbb{R}^3, $

    where $ a $, $ b > 0 $, $ p \in (1, 5) $. By considering a minimization problem on a special constraint set, we prove that the above problem has at least one sign-changing solution for any $ p \in (1, 5) $. Our results (especially $ p \in (1, 3] $) can be regarded as an improvement on the existing results.



    加载中


    [1] J. Sun, S. B. Liu, Nontrivial solutions of Kirchhoff type problems, Appl. Math. Lett., 25 (2012), 500–504. doi: 10.1016/j.aml.2011.09.045
    [2] Z. J. Guo, Ground states for Kirchhoff equations without compact condition, J. Differ. Equations, 259 (2015), 2884–2902. doi: 10.1016/j.jde.2015.04.005
    [3] Q. Q. Li, K. M. Teng, X. Wu, Ground states for Kirchhoff-type equations with critical or supercritical growth, Math. Method. Appl. Sci., 40 (2017), 6732–6746. doi: 10.1002/mma.4485
    [4] W. Chen, Z. W. Fu, Y. Wu, Positive solutions for nonlinear Schrödinger-Kirchhoff equations in $ \mathbb{R}^3$, Appl. Math. Lett., 104 (2020), 106274. doi: 10.1016/j.aml.2020.106274
    [5] Q. L. Xie, Least energy nodal solution for Kirchhoff type problem with an asymptotically 4-linear nonlinearity, Appl. Math. Lett., 102 (2020), 106157. doi: 10.1016/j.aml.2019.106157
    [6] G. B. Li, H. Y. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $ \mathbb{R}^3$, J. Differ. Equations, 257 (2014), 566–600. doi: 10.1016/j.jde.2014.04.011
    [7] L. Wang, B. L. Zhang, K. Cheng K, Ground state sign-changing solutions for the Schödinger-Kirchhoff equation in $ \mathbb{R}^3$, J. Math. Anal. Appl., 466 (2018), 1545–1569. doi: 10.1016/j.jmaa.2018.06.071
    [8] X. T. Qian, Ground state sign-changing solutions for a class of nonlocal problem, J. Math. Anal. Appl., 2 (2021), 124753.
    [9] S. T. Chen, Y. B. Li, X. H. Tang, Sign-changing solutions for asymptotically linear Schrödinger equation in bounded domains, Electron. J. Differ. Eq., 317 (2016), 1–9.
    [10] G. Q. Chai, W. M. Liu, Least energy sign-changing solutions for Kirchhoff-Poisson systems, Bound. Value Probl., 2019 (2019), 1–25. doi: 10.1186/s13661-018-1115-7
    [11] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2484) PDF downloads(148) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog