Research article Special Issues

Strong Langmuir turbulence dynamics through the trigonometric quintic and exponential B-spline schemes

  • Received: 31 December 2020 Accepted: 17 March 2021 Published: 26 March 2021
  • MSC : 35C07, 76B25, 81Q05, 49M05

  • In this manuscript, two recent numerical schemes (the trigonometric quintic and exponential cubic B-spline schemes) are employed for evaluating the approximate solutions of the nonlinear Klein-Gordon-Zakharov model. This model describes the interaction between the Langmuir wave and the ion-acoustic wave in a high-frequency plasma. The initial and boundary conditions are constructed via a novel general computational scheme. [1] has used five different numerical schemes, such as the Adomian decomposition method, Elkalla-expansion method, three-member of the well-known cubic B-spline schemes. Consequently, the comparison between our solutions and that have been given in [1], shows the accuracy of seven recent numerical schemes along with the considered model. The obtained numerical solutions are sketched in two dimensional and column distribution to explain the matching between the computational and numerical simulation. The novelty, originality, and accuracy of this research paper are explained by comparing the obtained numerical solutions with the previously obtained solutions.

    Citation: Mostafa M. A. Khater, A. El-Sayed Ahmed. Strong Langmuir turbulence dynamics through the trigonometric quintic and exponential B-spline schemes[J]. AIMS Mathematics, 2021, 6(6): 5896-5908. doi: 10.3934/math.2021349

    Related Papers:

  • In this manuscript, two recent numerical schemes (the trigonometric quintic and exponential cubic B-spline schemes) are employed for evaluating the approximate solutions of the nonlinear Klein-Gordon-Zakharov model. This model describes the interaction between the Langmuir wave and the ion-acoustic wave in a high-frequency plasma. The initial and boundary conditions are constructed via a novel general computational scheme. [1] has used five different numerical schemes, such as the Adomian decomposition method, Elkalla-expansion method, three-member of the well-known cubic B-spline schemes. Consequently, the comparison between our solutions and that have been given in [1], shows the accuracy of seven recent numerical schemes along with the considered model. The obtained numerical solutions are sketched in two dimensional and column distribution to explain the matching between the computational and numerical simulation. The novelty, originality, and accuracy of this research paper are explained by comparing the obtained numerical solutions with the previously obtained solutions.



    加载中


    [1] M. M. Khater, D. Lu, On the dynamics of strong Langmuir turbulence through the generalized khater method in the plasma physics, Eur. Phys. J. Plus, 2021. Accepted.
    [2] M. M. Khater, M. Inc, K. Nisar, R. A. Attia, Multi-solitons, lumps, and breath solutions of the water wave propagation with surface tension via four recent computational schemes, Ain Shams Eng. J., 2021. In Press.
    [3] M. M. Khater, T. A. Nofal, H. Abu-Zinadah, M. S. Lotayif, D. Lu, Novel computational and accurate numerical solutions of the modified Benjamin-Bona-Mahony (BBM) equation arising in the optical illusions field, Alex. Eng. J. 60 (2021), 1797–1806.
    [4] M. M. Khater, M. S. Mohamed, R. A. Attia, On semi analytical and numerical simulations for a mathematical biological model; the time-fractional nonlinear {K}olmogorov-{P}etrovskii-{P}iskunov (KPP) equation, Chaos, Solitons Fract., 144 (2021), 110676. doi: 10.1016/j.chaos.2021.110676
    [5] M. M. Khater, A. Mousa, M. El-Shorbagy, R. A. Attia, Analytical and semi-analytical solutions for Phi-four equation through three recent schemes, Results Phys., 22 (2021), 103954. doi: 10.1016/j.rinp.2021.103954
    [6] M. M. Khater, A. E. S. Ahmed, M. El-Shorbagy, Abundant stable computational solutions of Atangana-Baleanu fractional nonlinear HIV-1 infection of CD4$^+$ T-cells of immunodeficiency syndrome, Results Phys., 22 (2021), 103890. doi: 10.1016/j.rinp.2021.103890
    [7] M. M. Khater, S. Anwar, K. U. Tariq, M. S. Mohamed, Some optical soliton solutions to the perturbed nonlinear Schrödinger equation by modified Khater method, AIP Adv., 11 (2021), 025130. doi: 10.1063/5.0038671
    [8] M. M. Khater, R. A. Attia, A. Bekir, D. Lu, Optical soliton structure of the sub-10-fs-pulse propagation model, J. Optics, 50 (2021), 109–119. doi: 10.1007/s12596-020-00667-7
    [9] X. Zheng, Y. Shang, X. Peng, Orbital stability of solitary waves of the coupled Klein-Gordon-Zakharov equations, Math. Method. Appl. Sci., 40 (2017), 2623–2633. doi: 10.1002/mma.4187
    [10] H. Baskonus, T. Sulaiman, H. Bulut, On the new wave behavior to the Klein-Gordon-Zakharov equations in plasma physics, Indian J. Phys., 93 (2019), 393–399. doi: 10.1007/s12648-018-1262-9
    [11] A. Houwe, S. Abbagari, Y. Salathiel, M. Inc, S. Y. Doka, K. T. Crépin, et al., Complex traveling-wave and solitons solutions to the Klein-Gordon-Zakharov equations, Results Phys., 17 (2020), 103127. doi: 10.1016/j.rinp.2020.103127
    [12] S. Nestor, A. Houwe, H. Rezazadeh, A. Bekir, G. Betchewe, S. Y. Doka, New solitary waves for the Klein-Gordon-Zakharov equations, Mod. Phys. Lett. B, 34 (2020), 2050246.
    [13] S. Ali, M. Younis, M. O. Ahmad, S. T. R. Rizvi, Rogue wave solutions in nonlinear optics with coupled Schrödinger equations, Opt. Quantum Electron., 50 (2018), 266. doi: 10.1007/s11082-018-1526-9
    [14] S. T. R. Rizvi, K. Ali, M. Ahmad, Optical solitons for Biswas-Milovic equation by new extended auxiliary equation method, Optik, 204 (2020), 164181. doi: 10.1016/j.ijleo.2020.164181
    [15] I. Ali, S. T. R. Rizvi, S. O. Abbas, Q. Zhou, Optical solitons for modulated compressional dispersive alfven and heisenberg ferromagnetic spin chains, Results Phys., 15 (2019), 102714. doi: 10.1016/j.rinp.2019.102714
    [16] S. R. Rizvi, I. Afzal, K. Ali, M. Younis, Stationary solutions for nonlinear Schrödinger equations by Lie group Analysis, Acta Phys. Pol. A, 136 (2019), 187–189. doi: 10.12693/APhysPolA.136.187
    [17] B. Nawaz, K. Ali, S. O. Abbas, S. T. R. Rizvi, Q. Zhou, Optical solitons for non-kerr law nonlinear Schrödinger equation with third and fourth order dispersions, Chin. J. Phys., 60 (2019), 133–140. doi: 10.1016/j.cjph.2019.05.014
    [18] S. T. R. Rizvi, K. Ali, H. Hanif, Optical solitons in dual core fibers under various nonlinearities, Mod. Phys. Lett. B, 33 (2019), 1950189.
    [19] A. Arif, M. Younis, M. Imran, M. Tantawy, S. T. R. Rizvi, Solitons and lump wave solutions to the graphene thermophoretic motion system with a variable heat transmission, Eur. Phys. J. Plus, 134 (2019), 303. doi: 10.1140/epjp/i2019-12679-9
    [20] P. P. Sullivan, J. C. McWilliams, Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer, J. Fluid Mech., 879 (2019), 512–553. doi: 10.1017/jfm.2019.655
    [21] S. Kim, P. H. Yoon, G. Choe, Y. J. moon, Suprathermal solar wind electrons and Langmuir turbulence, Astrophys. J., 828 (2016), 60. doi: 10.3847/0004-637X/828/1/60
    [22] B. G. Reichl, I. Ginis, T. Hara, B. Thomas, T. Kukulka, D. Wang, Impact of sea-state-dependent Langmuir turbulence on the ocean response to a tropical cyclone, Mon. Weather Rev., 144 (2016), 4569–4590. doi: 10.1175/MWR-D-16-0074.1
    [23] D. Wang, T. Kukulka, B. G. Reichl, T. Hara, I. Ginis, Wind-wave misalignment effects on Langmuir turbulence in tropical cyclone conditions, J. Phys. Oceanogr., 49 (2019), 3109–3126. doi: 10.1175/JPO-D-19-0093.1
    [24] P. Yoon, M. Lazar, K. Scherer, H. Fichtner, R. Schlickeiser, Modified $\kappa$-distribution of solar wind electrons and steady-state Langmuir turbulence, Astrophys. J., 868 (2018), 131. doi: 10.3847/1538-4357/aaeb94
    [25] M. Osman, D. Lu, M. M. Khater, A study of optical wave propagation in the nonautonomous schrödinger-hirota equation with power-law nonlinearity, Results Phys., 13 (2019), 102157. doi: 10.1016/j.rinp.2019.102157
    [26] M. M. Khater, D. Lu, R. A. Attia, Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method, AIP Adv., 9 (2019), 025003. doi: 10.1063/1.5087647
    [27] M. M. Khater, D. Lu, R. A. Attia, Erratum: "Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method" [AIP adv. 9, 025003 (2019)], AIP Adv., 9 (2019), 049902. doi: 10.1063/1.5096005
    [28] M. M. Khater, D. Lu, R. A. Attia, Lump soliton wave solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation and KdV equation, Mod. Phys. Lett. B, 33 (2019), 1950199.
    [29] Y. Chu, M. M. Khater, Y. Hamed, Diverse novel analytical and semi-analytical wave solutions of the generalized (2+1)-dimensional shallow water waves model, AIP Adv., 11 (2021), 015223. doi: 10.1063/5.0036261
    [30] M. M. Khater, A. Bekir, D. Lu, R. A. Attia, Analytical and semi-analytical solutions for time-fractional Cahn-Allen equation, Math. Method. Appl. Sci., 44 (2021), 2682–2691. doi: 10.1002/mma.6951
    [31] E. H. Zahran, M. M. Khater, Modified extended tanh-function method and its applications to the Bogoyavlenskii equation, Appl. Math. Model., 40 (2016), 1769–1775. doi: 10.1016/j.apm.2015.08.018
    [32] D. Lu, A. R. Seadawy, M. M. Khater, Structures of exact and solitary optical solutions for the higher-order nonlinear schrödinger equation and its applications in mono-mode optical fibers, Mod. Phys. Lett. B, 33 (2019), 1950279.
    [33] A. Houwe, S. Abbagari, Y. Salathiel, M. Inc, S. Y. Doka, K. T. Crépin, et al., Complex traveling-wave and solitons solutions to the Klein-Gordon-Zakharov equations, Results Phys., 17 (2020), 103127. doi: 10.1016/j.rinp.2020.103127
    [34] S. Nestor, A. Houwe, H. Rezazadeh, A. Bekir, G. Betchewe, S. Y. Doka, New solitary waves for the Klein-Gordon-Zakharov equations, Mod. Phys. Lett. B, 34 (2020), 2050246.
    [35] R. Martínez, J. Macías-Díaz, A. Hendy, Corrigendum to a numerically efficient and conservative model for a riesz space-fractional Klein-Gordon-Zakharov system, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105109. doi: 10.1016/j.cnsns.2019.105109
    [36] V. E. Zakharov, Collapse of langmuir waves, Sov. Phys. JETP, 35 (1972), 908–914.
    [37] L. Bergé, B. Bidégaray, T. Colin, A perturbative analysis of the time-envelope approximation in strong langmuir turbulence, Phys. D: Nonlinear Phenom., 95 (1996), 351–379. doi: 10.1016/0167-2789(96)00058-9
    [38] C. Su, W. Yi, Error estimates of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime, IMA J. Numer. Anal., 38 (2018), 2055–2073. doi: 10.1093/imanum/drx044
    [39] W. Bao, X. Zhao, Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime, J. Comput. Phys., 398 (2019), 108886. doi: 10.1016/j.jcp.2019.108886
    [40] W. Bao, X. Dong, Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime, Numer. Math., 120 (2012), 189–229. doi: 10.1007/s00211-011-0411-2
    [41] E. Faou, K. Schratz, Asymptotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime, Numer. Math., 126 (2014), 441–469. doi: 10.1007/s00211-013-0567-z
    [42] M. M. A. Khater, On the dynamics of strong Langmuir turbulence through the five recent numerical schemes in the plasma physics, Numer. Method. Part. Differ. Equtions, 2020. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/num.22681.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2533) PDF downloads(149) Cited by(33)

Article outline

Figures and Tables

Figures(3)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog