Research article

Hamilton-connectedness and Hamilton-laceability of planar geometric graphs with applications

  • These authors contributed equally to this work.
  • Received: 23 December 2020 Accepted: 01 February 2021 Published: 03 February 2021
  • MSC : 05C45, 05C40, 05C90

  • In this paper, we have used two different proof techniques to show the Hamilton-connectedness of graphs. By using the vertex connectivity and Hamiltoniancity of graphs, we construct an infinite family of Hamilton-connected convex polytope line graphs whose underlying family of convex polytopes is not Hamilton-connected. By definition, we constructed two more infinite families of Hamilton-connected convex polytopes. As a by-product of our results, we compute exact values of the detour index of the families of Hamilton-connected convex polytopes. Finally, we classify the Platonic solids according to their Hamilton-connectedness and Hamilton-laceability properties.

    Citation: Suliman Khan, Sakander Hayat, Asad Khan, Muhammad Yasir Hayat Malik, Jinde Cao. Hamilton-connectedness and Hamilton-laceability of planar geometric graphs with applications[J]. AIMS Mathematics, 2021, 6(4): 3947-3973. doi: 10.3934/math.2021235

    Related Papers:

  • In this paper, we have used two different proof techniques to show the Hamilton-connectedness of graphs. By using the vertex connectivity and Hamiltoniancity of graphs, we construct an infinite family of Hamilton-connected convex polytope line graphs whose underlying family of convex polytopes is not Hamilton-connected. By definition, we constructed two more infinite families of Hamilton-connected convex polytopes. As a by-product of our results, we compute exact values of the detour index of the families of Hamilton-connected convex polytopes. Finally, we classify the Platonic solids according to their Hamilton-connectedness and Hamilton-laceability properties.



    加载中


    [1] B. R. Alspach, J. Liu, On the Hamilton-connectivity of generalized Petersen graphs, Discrete Math., 309 (2009), 5461–5473. doi: 10.1016/j.disc.2008.12.016
    [2] M. Bača, Face anti-magic labelings of convex polytopes, Util. Math., 55 (1999), 221–226.
    [3] M. Bača, Labelings of two classes of convex polytopes, Util. Math., 34 (1988), 24–31.
    [4] M. Bača, On magic labellings of convex polytopes, Ann. Discret. Math., 51 (1992), 13–16. doi: 10.1016/S0167-5060(08)70599-5
    [5] L. W. Beineke, Characterizations of derived graphs, J. Comb. Theory, 9 (1970), 129–135. doi: 10.1016/S0021-9800(70)80019-9
    [6] J. M. Chang, J. S. Yang, Y. L. Wang, Y. Chang, Panconnectivity, fault-tolerant Hamiltonicity and Hamiltonian-connectivity in alternating group graphs, Networks, 44 (2004), 302–310. doi: 10.1002/net.20039
    [7] G. Chartrand, A. M. Hobbs, H. A. Jung, S. F. Kapoor, C. S. J. Nash-Williams, The square of a block is Hamiltonian connected, J. Comb. Theory B, 16 (1974), 290–292. doi: 10.1016/0095-8956(74)90075-6
    [8] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math., 66 (2001), 211–249. doi: 10.1023/A:1010767517079
    [9] R. Frucht, A canonical representation of trivalent Hamiltonian graphs, J. Graph Theor., 1 (1976), 45–60.
    [10] M. R. Garey, D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, New York: W. H. Freeman, 1983.
    [11] V. S. Gordon, Y. L. Orlovich, F. Werner, Hamiltonian properties of triangular grid graphs, Discrete Math., 308 (2008), 6166–6188. doi: 10.1016/j.disc.2007.11.040
    [12] F. Harary, Graph theory, Addison-Wesley, 1969.
    [13] R. W. Hung, F. Keshavarz-Kohjerdi, C. B. Lin, J. S. Chen, The Hamiltonian connectivity of alphabet supergrid graphs, Int. J. Appl. Math., 49 (2019), 1–10.
    [14] M. Imran, H. M. A. Siddiqui, Computing the metric dimension of convex polytopes generated by wheel related graphs, Acta Math. Hung., 149 (2016), 10–30. doi: 10.1007/s10474-016-0606-1
    [15] Z. Kewen, H. J. Lai, J. Zhou, Hamiltonian-connected graphs, Comput. Math. Appl., 55 (2008), 2707–2714.
    [16] R. Kužel, L. Xiong, Every 4–connected line graph is Hamiltonian if and only if it is Hamiltonian connected, In: R. Kuzel, Hamiltonian properties of graphs, Ph.D Thesis, U. W. B. Pilsen, 2004.
    [17] I. Lukovits, Indicators for atoms included in cycles, J. Chem. Inf. Comput. Sci., 36 (1996), 65–68. doi: 10.1021/ci950082o
    [18] I. Lukovits, The detour index, Croat. Chem. Acta, 69 (1996), 873–882.
    [19] I. Lukovits, M. Razinger, On calculation of the detour index, J. Chem. Inf. Comput. Sci., 37 (1997), 283–286. doi: 10.1021/ci960034j
    [20] O. Ore, Hamilton-connected graphs, J. Math. Pure Appl., 42 (1963), 21–27.
    [21] S. Qiang, Z. Qain, A. Yahui, The Hamiltonicity of generalized honeycomb torus networks, Inf. Process. Lett., 115 (2005), 104–111.
    [22] G. Rücker, C. Rücker, Symmetry-aided computation of the detour matrix and the detour index, J. Chem. Inf. Comput. Sci., 38 (1998), 710–714. doi: 10.1021/ci980024d
    [23] H. Raza, S. Hayat, X. F. Pan, Binary locating-dominating sets in rotationally-symmetric convex polytopes, Symmetry, 10 (2018), 727–745. doi: 10.3390/sym10120727
    [24] H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 393 (2018), 172–185.
    [25] H. Raza, J. B. Liu, S. Qu, On mixed metric dimension of rotationally-symmetric graphs, IEEE Access, 8 (2020), 11560–11569. doi: 10.1109/ACCESS.2019.2961191
    [26] A. Shabbir, M. F. Nadeem, T. Zamfirescu, The property of Hamiltonian connectedness in Toeplitz graphs, Complexity, 2020 (2020), 5608720.
    [27] A. Simić, M. Bogdanović, J. Milošević, The binary locating-dominating number of some convex polytopes, ARS Math. Cont., 13 (2017), 367–377. doi: 10.26493/1855-3974.973.479
    [28] I. A. Stewart, Sufficient conditions for Hamiltonicity in multiswapped networks, J. Parallel Distrib. Comput., 101 (2017), 17–26. doi: 10.1016/j.jpdc.2016.10.015
    [29] C. Thomassen, Hamiltonian-connected tournaments, J. Comb. Theory B, 28 (1980), 142–163. doi: 10.1016/0095-8956(80)90061-1
    [30] N. Trinajstić, S. Nikolić, Z. Mihalić, On computing the molecular detour matrix, Int. J. Quantum Chem., 65 (1998), 415–419.
    [31] N. Trinajstić, S. Nikolić, B. Lučić, D. Amić, Z. Mihalić, The detour matrix in chemistry, J. Chem. Inf. Comput. Sci., 37 (1997), 631–638. doi: 10.1021/ci960149n
    [32] B. Wei, Hamiltonian paths and Hamiltonian connectivity in graphs, Discrete Math., 121 (1993), 223–228. doi: 10.1016/0012-365X(93)90555-8
    [33] J. Wei, Z. You, H. J. Lai, Spectral analogues of Erdös' theorem on Hamilton-connected graphs, Appl. Math. Comput., 340 (2019), 242–250.
    [34] X. Yang, J. Du, L. Xiong, Forbidden subgraphs for super-Eulerian and Hamiltonian graphs, Discrete Appl. Math., 288 (2021), 192–200. doi: 10.1016/j.dam.2020.08.034
    [35] X. Yang, D. J. Evans, H. J. Lai, G. M. Megson, Generalized honeycomb torus is Hamiltonian, Inf. Process. Lett., 92 (2004), 31–37. doi: 10.1016/j.ipl.2004.05.017
    [36] H. Whitney, Congruent graphs and the connectivity of graphs, Am. J. Math., 54 (1932), 150–168. doi: 10.2307/2371086
    [37] Q. Zhou, L. Wang, Some sufficient spectral conditions on Hamilton-connected and traceable graphs, Linear Multilinear A., 65 (2017), 224–234. doi: 10.1080/03081087.2016.1182463
    [38] Q. Zhou, L. Wang, Y. Lu, Signless Laplacian spectral conditions for Hamilton-connected graphs with large minimum degree, Linear Algebra Appl., 592 (2020), 48–64. doi: 10.1016/j.laa.2020.01.021
    [39] Q. Zhou, L. Wang, Y. Lu, Wiener index and Harary index on Hamilton-connected graphs with large minimum degree, Discrete Appl. Math., 247 (2018), 180–185. doi: 10.1016/j.dam.2018.03.063
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2577) PDF downloads(137) Cited by(2)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog