In this paper, we have used two different proof techniques to show the Hamilton-connectedness of graphs. By using the vertex connectivity and Hamiltoniancity of graphs, we construct an infinite family of Hamilton-connected convex polytope line graphs whose underlying family of convex polytopes is not Hamilton-connected. By definition, we constructed two more infinite families of Hamilton-connected convex polytopes. As a by-product of our results, we compute exact values of the detour index of the families of Hamilton-connected convex polytopes. Finally, we classify the Platonic solids according to their Hamilton-connectedness and Hamilton-laceability properties.
Citation: Suliman Khan, Sakander Hayat, Asad Khan, Muhammad Yasir Hayat Malik, Jinde Cao. Hamilton-connectedness and Hamilton-laceability of planar geometric graphs with applications[J]. AIMS Mathematics, 2021, 6(4): 3947-3973. doi: 10.3934/math.2021235
In this paper, we have used two different proof techniques to show the Hamilton-connectedness of graphs. By using the vertex connectivity and Hamiltoniancity of graphs, we construct an infinite family of Hamilton-connected convex polytope line graphs whose underlying family of convex polytopes is not Hamilton-connected. By definition, we constructed two more infinite families of Hamilton-connected convex polytopes. As a by-product of our results, we compute exact values of the detour index of the families of Hamilton-connected convex polytopes. Finally, we classify the Platonic solids according to their Hamilton-connectedness and Hamilton-laceability properties.
[1] | B. R. Alspach, J. Liu, On the Hamilton-connectivity of generalized Petersen graphs, Discrete Math., 309 (2009), 5461–5473. doi: 10.1016/j.disc.2008.12.016 |
[2] | M. Bača, Face anti-magic labelings of convex polytopes, Util. Math., 55 (1999), 221–226. |
[3] | M. Bača, Labelings of two classes of convex polytopes, Util. Math., 34 (1988), 24–31. |
[4] | M. Bača, On magic labellings of convex polytopes, Ann. Discret. Math., 51 (1992), 13–16. doi: 10.1016/S0167-5060(08)70599-5 |
[5] | L. W. Beineke, Characterizations of derived graphs, J. Comb. Theory, 9 (1970), 129–135. doi: 10.1016/S0021-9800(70)80019-9 |
[6] | J. M. Chang, J. S. Yang, Y. L. Wang, Y. Chang, Panconnectivity, fault-tolerant Hamiltonicity and Hamiltonian-connectivity in alternating group graphs, Networks, 44 (2004), 302–310. doi: 10.1002/net.20039 |
[7] | G. Chartrand, A. M. Hobbs, H. A. Jung, S. F. Kapoor, C. S. J. Nash-Williams, The square of a block is Hamiltonian connected, J. Comb. Theory B, 16 (1974), 290–292. doi: 10.1016/0095-8956(74)90075-6 |
[8] | A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math., 66 (2001), 211–249. doi: 10.1023/A:1010767517079 |
[9] | R. Frucht, A canonical representation of trivalent Hamiltonian graphs, J. Graph Theor., 1 (1976), 45–60. |
[10] | M. R. Garey, D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, New York: W. H. Freeman, 1983. |
[11] | V. S. Gordon, Y. L. Orlovich, F. Werner, Hamiltonian properties of triangular grid graphs, Discrete Math., 308 (2008), 6166–6188. doi: 10.1016/j.disc.2007.11.040 |
[12] | F. Harary, Graph theory, Addison-Wesley, 1969. |
[13] | R. W. Hung, F. Keshavarz-Kohjerdi, C. B. Lin, J. S. Chen, The Hamiltonian connectivity of alphabet supergrid graphs, Int. J. Appl. Math., 49 (2019), 1–10. |
[14] | M. Imran, H. M. A. Siddiqui, Computing the metric dimension of convex polytopes generated by wheel related graphs, Acta Math. Hung., 149 (2016), 10–30. doi: 10.1007/s10474-016-0606-1 |
[15] | Z. Kewen, H. J. Lai, J. Zhou, Hamiltonian-connected graphs, Comput. Math. Appl., 55 (2008), 2707–2714. |
[16] | R. Kužel, L. Xiong, Every 4–connected line graph is Hamiltonian if and only if it is Hamiltonian connected, In: R. Kuzel, Hamiltonian properties of graphs, Ph.D Thesis, U. W. B. Pilsen, 2004. |
[17] | I. Lukovits, Indicators for atoms included in cycles, J. Chem. Inf. Comput. Sci., 36 (1996), 65–68. doi: 10.1021/ci950082o |
[18] | I. Lukovits, The detour index, Croat. Chem. Acta, 69 (1996), 873–882. |
[19] | I. Lukovits, M. Razinger, On calculation of the detour index, J. Chem. Inf. Comput. Sci., 37 (1997), 283–286. doi: 10.1021/ci960034j |
[20] | O. Ore, Hamilton-connected graphs, J. Math. Pure Appl., 42 (1963), 21–27. |
[21] | S. Qiang, Z. Qain, A. Yahui, The Hamiltonicity of generalized honeycomb torus networks, Inf. Process. Lett., 115 (2005), 104–111. |
[22] | G. Rücker, C. Rücker, Symmetry-aided computation of the detour matrix and the detour index, J. Chem. Inf. Comput. Sci., 38 (1998), 710–714. doi: 10.1021/ci980024d |
[23] | H. Raza, S. Hayat, X. F. Pan, Binary locating-dominating sets in rotationally-symmetric convex polytopes, Symmetry, 10 (2018), 727–745. doi: 10.3390/sym10120727 |
[24] | H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 393 (2018), 172–185. |
[25] | H. Raza, J. B. Liu, S. Qu, On mixed metric dimension of rotationally-symmetric graphs, IEEE Access, 8 (2020), 11560–11569. doi: 10.1109/ACCESS.2019.2961191 |
[26] | A. Shabbir, M. F. Nadeem, T. Zamfirescu, The property of Hamiltonian connectedness in Toeplitz graphs, Complexity, 2020 (2020), 5608720. |
[27] | A. Simić, M. Bogdanović, J. Milošević, The binary locating-dominating number of some convex polytopes, ARS Math. Cont., 13 (2017), 367–377. doi: 10.26493/1855-3974.973.479 |
[28] | I. A. Stewart, Sufficient conditions for Hamiltonicity in multiswapped networks, J. Parallel Distrib. Comput., 101 (2017), 17–26. doi: 10.1016/j.jpdc.2016.10.015 |
[29] | C. Thomassen, Hamiltonian-connected tournaments, J. Comb. Theory B, 28 (1980), 142–163. doi: 10.1016/0095-8956(80)90061-1 |
[30] | N. Trinajstić, S. Nikolić, Z. Mihalić, On computing the molecular detour matrix, Int. J. Quantum Chem., 65 (1998), 415–419. |
[31] | N. Trinajstić, S. Nikolić, B. Lučić, D. Amić, Z. Mihalić, The detour matrix in chemistry, J. Chem. Inf. Comput. Sci., 37 (1997), 631–638. doi: 10.1021/ci960149n |
[32] | B. Wei, Hamiltonian paths and Hamiltonian connectivity in graphs, Discrete Math., 121 (1993), 223–228. doi: 10.1016/0012-365X(93)90555-8 |
[33] | J. Wei, Z. You, H. J. Lai, Spectral analogues of Erdös' theorem on Hamilton-connected graphs, Appl. Math. Comput., 340 (2019), 242–250. |
[34] | X. Yang, J. Du, L. Xiong, Forbidden subgraphs for super-Eulerian and Hamiltonian graphs, Discrete Appl. Math., 288 (2021), 192–200. doi: 10.1016/j.dam.2020.08.034 |
[35] | X. Yang, D. J. Evans, H. J. Lai, G. M. Megson, Generalized honeycomb torus is Hamiltonian, Inf. Process. Lett., 92 (2004), 31–37. doi: 10.1016/j.ipl.2004.05.017 |
[36] | H. Whitney, Congruent graphs and the connectivity of graphs, Am. J. Math., 54 (1932), 150–168. doi: 10.2307/2371086 |
[37] | Q. Zhou, L. Wang, Some sufficient spectral conditions on Hamilton-connected and traceable graphs, Linear Multilinear A., 65 (2017), 224–234. doi: 10.1080/03081087.2016.1182463 |
[38] | Q. Zhou, L. Wang, Y. Lu, Signless Laplacian spectral conditions for Hamilton-connected graphs with large minimum degree, Linear Algebra Appl., 592 (2020), 48–64. doi: 10.1016/j.laa.2020.01.021 |
[39] | Q. Zhou, L. Wang, Y. Lu, Wiener index and Harary index on Hamilton-connected graphs with large minimum degree, Discrete Appl. Math., 247 (2018), 180–185. doi: 10.1016/j.dam.2018.03.063 |