Research article

Weak Roman domination in rooted product graphs

  • Received: 11 September 2020 Accepted: 11 January 2021 Published: 22 January 2021
  • MSC : 05C69, 05C76

  • In this paper, we obtain closed formulae for the weak Roman domination number of rooted product graphs. As a consequence of the study, we show that the use of rooted product graphs is a useful tool to show that the problem of computing the weak Roman domination number of a graph is NP-hard.

    Citation: Rangel Hernández-Ortiz, Luis Pedro Montejano, Juan Alberto Rodríguez-Velázquez. Weak Roman domination in rooted product graphs[J]. AIMS Mathematics, 2021, 6(4): 3641-3653. doi: 10.3934/math.2021217

    Related Papers:

  • In this paper, we obtain closed formulae for the weak Roman domination number of rooted product graphs. As a consequence of the study, we show that the use of rooted product graphs is a useful tool to show that the problem of computing the weak Roman domination number of a graph is NP-hard.



    加载中


    [1] A. Cabrera Martínez, L. P. Montejano, J. A. Rodríguez-Velázquez, Total weak Roman domination in graphs, Symmetry, 11 (2019), 831. doi: 10.3390/sym11060831
    [2] A. Cabrera-Martínez, I. G. Yero, Constructive characterizations concerning weak Roman domination in trees, Discrete Appl. Math., 284 (2020), 384–390. doi: 10.1016/j.dam.2020.03.058
    [3] M. Chellali, T. W. Haynes, S. T. Hedetniemi, Bounds on weak Roman and 2-rainbow domination numbers, Discrete Appl. Math., 178 (2014), 27–32. doi: 10.1016/j.dam.2014.06.016
    [4] E. J. Cockayne, O. Favaron, C. M. Mynhardt, Secure domination, weak Roman domination and forbidden subgraphs, Bull. Inst. Combin. Appl., 39 (2003), 87–100.
    [5] E. J. Cockayne, P. J. P. Grobler, W. R. Gründlingh, J. Munganga, J. H. van Vuuren, Protection of a graph, utilitas mathematica, 67 (2005), 19–32.
    [6] M. Dettlaff, M. Lemańska, J. A. Rodríguez-Velázquez, R. Zuazua, On the super domination number of lexicographic product graphs, Discrete Appl. Math., 263 (2019), 118–129. doi: 10.1016/j.dam.2018.03.082
    [7] H. Fernau, J. A. Rodríguez-Velázquez, On the (adjacency) metric dimension of corona and strong product graphs and their local variants: Combinatorial and computational results, Discrete Appl. Math., 236 (2018), 183–202. doi: 10.1016/j.dam.2017.11.019
    [8] H. Fernau, J. A. Rodríguez-Velázquez, Notions of metric dimension of corona products: combinatorial and computational results, In: Computer science-theory and applications, Springer, Cham, 2014.
    [9] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA, 1979.
    [10] T. Haynes, S. Hedetniemi, P. Slater, Domination in Graphs: Advanced Topics, CRC Press, 1998.
    [11] T. Haynes, S. Hedetniemi, P. Slater, Fundamentals of Domination in Graphs, CRC Press, 1998.
    [12] M. A. Henning, S. T. Hedetniemi, Defending the Roman Empire-a new strategy, Discrete Math., 266 (2003), 239–251. doi: 10.1016/S0012-365X(02)00811-7
    [13] M. Ivanović, D. Urošević, Variable neighborhood search approach for solving Roman and weak Roman domination problems on graphs, Comput. Inform., 38 (2019), 57–84. doi: 10.31577/cai_2019_1_57
    [14] P. Roushini Leely Pushpam, T. N. M. Malini Mai, Weak roman domination in graphs, Discuss. Math. Graph T., 31 (2011), 161–170. doi: 10.7151/dmgt.1535
    [15] P. Roushini Leely Pushpam, M. Kamalam, Effect of vertex deletion on the weak Roman domination number of a graph, AKCE Int. J. Graphs Comb., 16 (2019), 204–212. doi: 10.1016/j.akcej.2017.12.003
    [16] D. Klein, J. A. Rodríguez-Velázquez, Protection of lexicographic product graphs, Discuss. Math. Graph Theory, https://doi.org/10.7151/dmgt.2243.
    [17] M. Valveny, H. Pérez-Rosés, J. A. Rodríguez-Velázquez, On the weak Roman domination number of lexicographic product graphs, Discrete Appl. Math., 263 (2019), 257–270. doi: 10.1016/j.dam.2018.03.039
    [18] M. Valveny, J. A. Rodríguez-Velázquez, Protection of graphs with emphasis on Cartesian product graphs, Filomat, 33 (2019), 319–333. doi: 10.2298/FIL1901319V
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2292) PDF downloads(138) Cited by(4)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog