Research article

Random attractors for stochastic discrete long wave-short wave resonance equations driven by fractional Brownian motions

  • Received: 07 October 2020 Accepted: 29 December 2020 Published: 07 January 2021
  • MSC : 37H05, 60G22, 60H15

  • We study the dynamical behavior of the solutions of stochastic discrete long wave-short wave resonance equations driven by fractional Brownian motions with Hurst parameter $ H\in(\frac{1}{2}, 1) $. And then we prove that the random dynamical system has a unique random equilibrium, which constitutes a singleton sets random attractor.

    Citation: Ranran Liu, Hui Liu, Jie Xin. Random attractors for stochastic discrete long wave-short wave resonance equations driven by fractional Brownian motions[J]. AIMS Mathematics, 2021, 6(3): 2900-2911. doi: 10.3934/math.2021175

    Related Papers:

  • We study the dynamical behavior of the solutions of stochastic discrete long wave-short wave resonance equations driven by fractional Brownian motions with Hurst parameter $ H\in(\frac{1}{2}, 1) $. And then we prove that the random dynamical system has a unique random equilibrium, which constitutes a singleton sets random attractor.



    加载中


    [1] L. Arnold, Random dynamical systems, Berlin: Springer-Verlag, 1998.
    [2] P. Bates, X. Chen, A. Chmaj, Traveling waves of bistable dynamics on a lattice, SIAM J. Math. Anal., 35 (2003), 520–546. doi: 10.1137/S0036141000374002
    [3] P. Bates, K. Lu, B. Wang, Attractors for lattice dynamical systems, Int. J. Bifurcat. Chaos, 11 (2001), 143–153. doi: 10.1142/S0218127401002031
    [4] P. Bates, H. Lisei, K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1–21. doi: 10.1142/S0219493706001621
    [5] Z. Brzeźniak, M. Capiński, F. Flandoli, Pathwise global attractors for stationary random dynamical systems, Probab. Theory Relat. Fields, 95 (1993), 87–102. doi: 10.1007/BF01197339
    [6] S. Chow, Lattice dynamical systems, Berlin, Heidelberg: Springer, 2003.
    [7] H. Crauel, A. Debussche, F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 9 (1997), 307–341. doi: 10.1007/BF02219225
    [8] H. Crauel, F. Flandoli, Attractors for randomdynamical systems, Probab. Theory Relat. Fields, 100 (1994), 365–393. doi: 10.1007/BF01193705
    [9] M. Garrrido-Atienza, P. Kloeden, A. Neuenkirch, Discretization of stationary solutions of stochastic systems driven by fractional Brownian motion, Appl. Math. Optim., 60 (2009), 151–172. doi: 10.1007/s00245-008-9062-9
    [10] M. Garrrido-Atienza, K. Lu, B. Schmalfuss, Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion, Discrete Contin. Dyn. B, 14 (2010), 473–493.
    [11] H. Gao, M. Garrrido-Atienza, B. Schmalfuss, Random attractors for stochastic evolution equations driven by fractional Brownian motion, SIAM. J. Math. Anal., 46 (2014), 2281–2309. doi: 10.1137/130930662
    [12] A. Gu, Y. Li, Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions, Commun. Nonlinear Sci., 19 (2014), 3929–3937. doi: 10.1016/j.cnsns.2014.04.005
    [13] B. Guo, L. Chen, Orbital stability of solitary waves of the long wave-short wave resonance equations, Math. Method. Appl. Sci., 21 (1998), 883–894. doi: 10.1002/(SICI)1099-1476(19980710)21:10<883::AID-MMA974>3.0.CO;2-B
    [14] M. Hairer, A. Ohashi, Ergodic theory for SDEs with extrinsic memory, Ann. Probab., 35 (2007), 1950–1977.
    [15] C. Ji, H. Liu, J. Xin, Random attractors of the stochastic extended Brusselator system with a multiplicative noise, AIMS Mathematics, 5 (2020), 3584–3611. doi: 10.3934/math.2020233
    [16] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge: Cambridge University Press, 1990.
    [17] Y. Li, Long time behavior for the weakly damped driven long-wave-short-wave resonance equations, J. Differ. Equations, 223 (2006), 261–289. doi: 10.1016/j.jde.2005.07.006
    [18] H. Liu, H. Gao, Ergodicity and dynamics for the stochastic 3D Navier-Stokes equations with damping, Commun. Math. Sci., 16 (2018), 97–122. doi: 10.4310/CMS.2018.v16.n1.a5
    [19] H. Liu, C. Sun, J. Xin, Attractors of the 3D Magnetohydrodynamics equations with damping, B. Malays. Math. Sci. Soc., 44 (2021), 337–351. doi: 10.1007/s40840-020-00949-0
    [20] R. Liu, H. Liu, J. Xin, Attractor for the non-autonomous long wave-short wave resonance interaction equation with damping, J. Appl. Anal. Comput., 10 (2020), 1149–1169.
    [21] B. Maslowski, B. Schmalfuss, Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion, Stoch. Anal. Appl., 22 (2004), 1577–1607. doi: 10.1081/SAP-200029498
    [22] J. Shu, Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions, Discrete Contin. Dyn. B, 22 (2017), 1587–1599.
    [23] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, New York: Springer-Verlag, 1997.
    [24] S. Tindel, C. Tudor, F. Viens, Stochastic evolution equations with fractional Brownian motion, Probab. Theory Relat. Fields, 127 (2003), 186–204. doi: 10.1007/s00440-003-0282-2
    [25] M. Tsutsumi, S. Hatano, Well-posedness of the Cauchy problem for the long wave-short wave resonance equations, Nonlinear Anal., 22 (1994), 155–171. doi: 10.1016/0362-546X(94)90032-9
    [26] B. Wang, Dynamics of systems on infinite lattices, J. Differ. Equations, 221 (2006), 224–245. doi: 10.1016/j.jde.2005.01.003
    [27] C. Wang, G. Xue, C. Zhao, Invariant Borel probability measures for discrete long-wave-short-wave resonance equations, Appl. Math. Comput., 339 (2018), 853–865.
    [28] J. Xin, H. Lu, Random attractors for the stochastic discrete long wave-short wave resonance equations, J. Appl. Math., 2011 (2011), 1–13.
    [29] C. Zhao, S. Zhou, Compact kernel sections of long-wave-short-wave resonance equations on infinite lattices, Nonlinear Anal., 68 (2008), 652–670. doi: 10.1016/j.na.2006.11.027
    [30] S. Zhou, W. Shi, Attractors and dimension of dissipative lattice systems, J. Differ. Equations, 224 (2006), 172–204. doi: 10.1016/j.jde.2005.06.024
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1395) PDF downloads(62) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog